J Clin Pathol 66:312-318 doi:10.1136/jclinpath-2012-201098
  • Original article

Fourier transform infrared spectroscopy imaging of live epithelial cancer cells under non-aqueous media

  1. Bashir A Lwaleed3
  1. 1School of Pharmacy and Biomedical Sciences, Portsmouth University, Portsmouth, Hampshire, UK
  2. 2Department of Urology, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, UK
  3. 3Faculty of Health Sciences, University of Southampton, Southampton, Hampshire, UK
  1. Correspondence to Dr Bashir A Lwaleed, Faculty of Health Sciences, University of Southampton, South Academic and Pathology Block (MP 11), Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD, UK; bashir{at}
  • Received 24 July 2012
  • Revised 21 December 2012
  • Accepted 22 December 2012
  • Published Online First 7 February 2013


Aims Fourier transform infrared (FT-IR) imaging is increasingly being applied to biomedical specimens, but strong IR absorption by water complicates live cell imaging. This study investigates the viability of adherent epithelial cells maintained for short periods under mineral oils in order to facilitate live cell spectroscopy using FT-IR with subsequent imaging.

Methods The MGH-U1 urothelial or CaCo2 colorectal cancer cell lines were grown on plastic surfaces or mid-range infrared transparent windows. Medium in established cultures was replaced with paraffin mineral oil, or Fluorolube, for up to 2 h, and viability assessed by supravital staining. Drug handling characteristics were also assessed. Imaging of preparations was attempted by reflectance and transmission using a Varian FT-IR microscope.

Results Cells covered by mineral oil remained viable for 2 h, with recovery into normal medium possible. MTT ((3-(4,5-dimethylthlazol-2-yl)-2,5-diphenyl tetrazolium) conversion to crystalline formazan and differential patterns of drug uptake were maintained. The combination of a calcium fluoride substrate, Fluorolube oil, and transmission optics proved best for spectroscopy. Spectral features were used to obtain images of live cells.

Conclusions The viability of cells overlaid with IR transparent oils was assessed as part of a technique to optimise conditions for FT-IR imaging. Images of untreated cells were obtained using both reflectance and transmission. This represents an effective means of imaging live cells by IR spectroscopy, and also means that imaging is not necessarily a terminal event. It also increases options for producing images based on real-time biochemistry in a range of in vitro experimental and ‘optical biopsy’ contexts.