Article Text

other Versions

Disorders of iron metabolism. Part 1: molecular basis of iron homoeostasis
  1. Manuel Muñoz1,
  2. José Antonio García-Erce2,
  3. Ángel Francisco Remacha3
  1. 1Transfusion Medicine, School of Medicine, University of Málaga, Málaga, Spain
  2. 2Hematology and Hemotherapy, University Hospital Miguel Servet, Zaragoza, Spain
  3. 3Hematology and Hemotherapy, Complejo Hospitalario de Toledo, Toledo, Spain
  1. Correspondence to Professor Manuel Muñoz, Medicina Transfusional Facultad de Medicina Campus de Teatinos, s/n 29071-Málaga, Spain; mmunoz{at}


Iron functions Iron is an essential micronutrient, as it is required for satisfactory erythropoietic function, oxidative metabolism and cellular immune response.

Iron physiology Absorption of dietary iron (1–2 mg/day) is tightly regulated and just balanced against iron loss because there are no active iron excretory mechanisms. Dietary iron is found in haem (10%) and non-haem (ionic, 90%) forms, and their absorption occurs at the apical surface of duodenal enterocytes via different mechanisms. Iron is exported by ferroportin 1 (the only putative iron exporter) across the basolateral membrane of the enterocyte into the circulation (absorbed iron), where it binds to transferrin and is transported to sites of use and storage. Transferrin-bound iron enters target cells—mainly erythroid cells, but also immune and hepatic cells—via receptor-mediated endocytosis. Senescent erythrocytes are phagocytosed by reticuloendothelial system macrophages, haem is metabolised by haem oxygenase, and the released iron is stored as ferritin. Iron will be later exported from macrophages to transferrin. This internal turnover of iron is essential to meet the requirements of erythropoiesis (20–30 mg/day). As transferrin becomes saturated in iron-overload states, excess iron is transported to the liver, the other main storage organ for iron, carrying the risk of free radical formation and tissue damage.

Regulation of iron homoeostasis Hepcidin, synthesised by hepatocytes in response to iron concentrations, inflammation, hypoxia and erythropoiesis, is the main iron-regulatory hormone. It binds ferroportin on enterocytes, macrophages and hepatocytes triggering its internalisation and lysosomal degradation. Inappropriate hepcidin secretion may lead to either iron deficiency or iron overload.

  • Diagnosis
  • haemochromatosis
  • hematopoesis
  • inflammation
  • metabolism

Statistics from


  • All author contributed equally to the design, writing and discussion of this paper.

  • Competing interests None.

  • Provenance and peer review Commissioned; externally peer reviewed.

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.