THE ESTIMATION AND RECOVERY OF DEXTRAN SULPHATES IN BIOLOGICAL FLUIDS

BY

H. A. ELLIS AND K. W. WALTON

From the Department of Experimental Pathology, University of Birmingham

(RECEIVED FOR PUBLICATION MARCH 28, 1959)

The dextran sulphates resemble heparin in being active inhibitors of several different forms of biological activity, e.g., blood coagulation, serum complement activity, and certain enzyme systems (Walton, 1954). In each case the activity of the dextran sulphate appears to be dependent upon direct interaction with one or more protein components of the biological system under investigation. In fact, the interaction of certain varieties of dextran sulphates with specific plasma proteins has been utilized as a means of plasma fractionation (Onley, Walton, and Cornwell, 1957).

Work in this field has made it necessary to seek a simple method of assessing quantitatively the concentration of dextran sulphates of given physical and chemical characteristics in biological fluids and in some instances of recovering the dextran sulphate from these fluids. The general resemblance in chemical constitution and behaviour between the dextran sulphates and heparin suggested a survey of the published methods for the estimation and isolation of heparin to determine whether or not such methods were equally applicable to the estimation of dextran sulphates.

Materials

Dextran Sulphates.—Sulphuric esters of two different dextran fractions were prepared as previously described by Ricketts (1952). The parent dextrans had intrinsic viscosities [η] of 0.04 and 0.67 respectively. The dextran sulphates derived from them contained 16.3% and 16.1% sulphur and their approximate molecular weights were 1/7:7 x 10^6 and G.A:2 x 10^6.

Heparin.—A commercial sample of “polarin” (Evans) was used. This sample contained 8.61% sulphur and assayed at 113 i.u./mg.

Azure A.—Batch No. 005804 of “revector” stain (Hopkins and Williams Ltd.) was used without further purification.

Thromboplastin.—Desiccated rabbit brain powder “bacto-thromboplastin” (Difco Ltd.), and acetone-extracted human brain prepared according to the method of Biggs and Macfarlane (1953) were used as specified.

Pepsin and Trypsin.—As dry powder were supplied by British Drug Houses Ltd.

Other Reagents.—Petroleum ether (B.P. 60–80° C.) was supplied by May and Baker Ltd.; phenol, ammonium sulphate, and sodium chloride were employed as analytical grade reagents.

Citrated Plasma.—Whole human blood was collected from normal volunteers in a paraffined syringe and mixed with 3.8% (w/v) sodium citrate solution in the proportions 9:1. Plasma was separated after centrifugation at 3,000 r.p.m. for 15 minutes.

INTERACTION WITH BASIC DYES

It is well known that sulphated polysaccharides react with certain basic dyes in such a way as to change the normal (orthochromatic) colour of the dye to another (metachromatic) colour. It was shown by MacIntosh (1941) that the metachromatic reaction produced by heparin when added to the basic dye, toluidine blue, could be utilized quantitatively for the estimation of this substance. Walton and Ricketts (1954) showed that the method was applicable to the estimation of dextran sulphates in aqueous solution and investigated the physico-chemical basis of the reaction. It was later found that the thiazine dye azure A, which is chemically closely similar to toluidine blue, could be employed with identical effect and was preferable in that less variation was encountered between different batches of the dye.

Reagents

(i) Azure A Solution.—0.003% (w/v) azure A in 0.01 N hydrochloric acid containing 0.2% (w/v) sodium chloride.

(ii) Sodium Chloride Solution.—0.2% (w/v).

(iii) Dextran Sulphate Solutions. — Aqueous solutions of dextran sulphates 1/7, ranging in concentration from 1 μg. per ml. to 200 mg. per ml., and similar concentrations of the acid polysaccharide in citrated plasma, serum or albumin solution.
Method

The technique used was identical with that described by Walton and Ricketts except that the azure A reagent was substituted for the toluidine blue reagent previously used.

Results

(i) Dextran Sulphate in Aqueous Solution.—In confirmation of the results previously obtained, as illustrated in Fig. 1 it was found that an excellent linear relationship existed between the percentage of the dye bound and the concentration of dextran sulphate over the range 0 to 6 μg./ml. Above this range, increments in concentration of dextran sulphate produced relatively little further increase in the percentage of dye bound till a point was reached at which the latter was virtually constant over the range 12 to 5,000 μg. per ml. Thereafter at still higher concentrations (5 to 200 mg. per ml.) the metachromatic reaction showed progressive inhibition, also in an apparently linear fashion.

(ii) Dextran Sulphates in Presence of Proteins.— It was found that the metachromatic reaction was completely inhibited in plasma. Moreover, on attempting the extraction of the dextran sulphate-dye complex with petroleum ether a stiff viscous gel formed and no extraction was possible. Similar results were obtained when human serum or albumin solutions were substituted for plasma and as little as 0.001% of each protein produced 25% inhibition of the reaction and 0.01% protein completely masked the metachromasia (Fig. 2).

Masking of the metachromasia given by other acidic polysaccharides was similarly found by French and Benditt (1953) and by Hamerman and Schubert (1953).

Evaluation

From these results it was evident that the metachromatic method was only suitable for the estimation of dextran sulphates in “protein-free” solutions, the latter being defined as containing less than 0.0001% protein. In such solutions the method was extremely sensitive, allowing the estimations of concentrations between 1 and 6 μg. per ml. with an error of ±5%. It was necessary to make accurate dilutions of an unknown solution to ensure that values obtained fell upon this linear portion of the curve relating percentage of dye bound to the dextran sulphate concentration. This method has been found useful, for example, in estimating the excretion of dextran sulphates in the urine of experimental animals (Ricketts, Walton, and Saddlington, 1954) and in man (Jeavons, Walton, and Ricketts, 1956) where the small amounts of protein normally present are insufficient to interfere with the production of metachromasia.

ATTEMPTED RECOVERY AND ESTIMATION AFTER PROTEIN PRECIPITATION

In view of the difficulties previously encountered, attempts were made to remove the proteins of plasma before the recovery and colorimetric estimation of dextran sulphates by the metachromatic method. Protein precipitation by a number of conventional methods (trichloracetic acid, sodium tungstate, copper tungstate, etc.) gave unsatisfactory results. Ammonium sulphate and phenol precipitations proved to be more satisfactory and are described in detail.

Precipitation of Proteins with Ammonium Sulphate

Principle.— Bassioni (1954) used ammonium sulphate for the isolation and estimation of heparin in tissue fluids, but obtained recoveries of 50% only. Attention was therefore paid to the effects of variation of pH, temperature, and ammonium sulphate concentration to ascertain whether or not better recoveries could be obtained.
Reagents.—These are as follows:
Ammonium sulphate (Analar grade)
2 N sodium hydroxide solution
0.1 N hydrochloric acid
0.2% (w/v) sodium chloride solution
Buffer Reagents.—0.2 M disodium hydrogen phosphate and 0.1 M citric acid

Method.—Plasma containing various amounts of dextran sulphate was added in 2.2 ml. volumes to 4.8 ml. of 0.2% NaCl and 0.5 ml. 2 N NaOH, and 6.5 g. ammonium sulphate crystals was added, the whole shaken for three minutes, allowed to stand, and then filtered. An aliquot of the filtrate was titrated against 0.1 N HCl and the amount of acid required to neutralize the bulk of the filtrate calculated. The dextran sulphate was then estimated in the neutralized filtrate by the colorimetric method of MacIntosh. The process was repeated at a range of pH values from 3.75 to 12.5 (using 5.3 ml. volumes of buffer in place of 4.8 ml. NaCl and 0.5 ml. 2 N NaOH) and varying concentrations of ammonium sulphate. Protein concentrations in the various filtrates were estimated from values obtained for the optical density at 2,800 A using a "unicam" spectrophotometer.

Results.—Small concentrations of residual protein interfered with the subsequent metachromatic reaction as expected, so that saturation with ammonium sulphate was necessary. Variations in pH and temperature did not significantly influence recoveries which varied from 40 to 60% of known added amounts of dextran sulphate. These results are summarized in Tables IA and IB.

Table IA

Percentage saturation ammonium sulphate	33	66	100	100
Percentage protein removal	34	86	95	95
Recovery	Nil	Nil	50	54.2

Table IB

Concentration of Added Dextran Sulphate (mg.%)	12.5	30	15	7.5
Concentration found (mg.%)	24.0	13.1	6.6	3.8
Percentage Recovery	40.4%	43.7%	44.2%	50%

Evaluation of Protein Precipitation.—Ammonium sulphate precipitation was less time-consuming than phenol precipitation but had the obvious disadvantage of low recoveries of dextran sulphate added to plasma and interference with the metachromatic reaction unless protein precipitation was virtually complete. The phenol method gave good and reproducible recoveries and there was no interference subsequently with the metachromatic reaction. Attempts to reduce the time of standing allowed in this method to periods varying between one and six hours gave unsatisfactory recoveries of from 45 to 75%.
ATTEMPTED PRELIMINARY DIGESTION OF PROTEIN

Principle
Harington, Pochin, and Squire (1940) reported the prevention of protein interference during the estimation of Evans blue in plasma by preliminary digestion with pepsin. In the present context digestion was attempted with pepsin and trypsin.

Reagents
The following were used:
- Pepsin, 5% (w/v) aqueous solution
- Trypsin, 5% (w/v) aqueous solution
- Hydrochloric acid, 5 N
- Sodium hydroxide, 5 N
- Dextran sulphate I/7 dissolved in plasma
- Sodium chloride solution, 0.2% (w/v)

Method
Pepsin solution, 0.4 ml., was added to 2 ml. plasma to which dextran sulphate had been added in concentrations from 2 to 60 mg.%. The pH was adjusted to 1.7 by the addition of 0.20 ml. 5 N HCl, before incubation for three hours at 40° C. Then 0.2 ml. 5 N NaOH was added to bring the pH to 3.5 and the volume was made up to 20 ml. using 0.2% NaCl. Aliquots were used for the colorimetric estimation of dextran sulphate using the metachromatic reaction.

Results
Protein digestion did not occur in the presence of dextran sulphate, whereas in control plasma samples free from dextran sulphate it proceeded satisfactorily. Dextran sulphate was not detected subsequently by the metachromatic reaction. Trypsin was used at pH 8.5 and again no digestion occurred.

Evaluation
Clearly, preliminary digestion of protein with pepsin or trypsin is unsatisfactory as these enzymes appear to be inhibited by dextran sulphate. This was confirmed by the observation that dextran sulphate produced a diminution of the area of haemoglobin denaturation by trypsin on a blood agar plate. Dextran sulphate therefore resembles heparin, which was shown to inhibit trypsin digestion by Horwitt (1940). Papain was found to be equally unsatisfactory for the same reason. Furthermore, using azo-albumin as substrate (Tomarelli, Charney, and Harding, 1949), it was found that dextran sulphate inhibited the proteolytic activities of crystalline preparations of trypsin and chymotrypsin.

ESTIMATION OF DEXTRAN SULPHATE IN PLASMA BY VIRTUE OF ITS ANTICOMPLEMENTARY ACTIVITY

Heparin and other highly charged macromolecular compounds are known to exert an anticomplementary effect in a haemolytic system (Ecker and Gross, 1929). Walton, Ellis, and Taylor (1957) have described a method for the determination of the anticomplementary activity of heparin and dextran sulphates. Attempts to utilize this technique for the estimation of dextran sulphate were satisfactory for saline solutions but for solutions in plasma unreliable results were obtained, due presumably to the occasional anticomplementary activity of plasma and interference by citrate ions.

ESTIMATION OF DEXTRAN SULPHATE BY VIRTUE OF ITS ANTITHROMBOPLASTIC ACTIVITY

Principle
It was known that dextran sulphate inhibited "thromboplastin activity" and recently Grasset and Schwartz (1955) described a method of assay for heparin and dextran sulphate based upon this fact.

Reagents
The following were used:
- Fresh citrated human plasma
- Thromboplastin suspension in saline
- Calcium chloride solution M/40
- Dextran sulphate solutions I/7 and G.A in graded concentrations dissolved in saline, serum, or plasma

Method
Plasma, 0.1 ml., and 0.1 ml. of thromboplastin were added to 0.2 ml. of dextran sulphate solution and allowed to stand for 10 minutes at room temperature. Then 0.1 ml. M/40 CaCl₂ was added on a water-bath at 37° C, and the clotting time recorded. Triplicate estimations were made for each concentration of dextran sulphate.

Standard curves were constructed relating the clotting times obtained to the corresponding dextran sulphate concentrations. Values for unknown samples were obtained by reference to these curves.

Results
The low molecular weight dextran sulphate (I) gave an apparent linear relationship between clotting times and concentration of added material (Fig. 3). In order to test the validity and reproducibility of this, three runs were made in triplicate over the range 0 to 10 µg. per 0.2 ml. added dextran sulphate solution, using the same substrate plasma and the same batch of thromboplastin. Analysis of the data obtained revealed a significant regression coefficient in each case with no significant difference between the slopes of individual runs. Ninety-five per cent. confidence

<table>
<thead>
<tr>
<th>TABLE III</th>
<th>REPRODUCIBILITY OF ESTIMATION OF DEXTRAN SULPHATE BY THROMBOPLASTIN METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>Run 2</td>
</tr>
<tr>
<td>Regression coefficient (r)*</td>
<td>0.969</td>
</tr>
<tr>
<td>Slope (b)**</td>
<td>0.50</td>
</tr>
<tr>
<td>Degrees freedom (df)</td>
<td>13</td>
</tr>
<tr>
<td>Significance (P)</td>
<td>>0.001</td>
</tr>
</tbody>
</table>

* Derived from regression lines relating clotting time to concentration of added dextran sulphate.
limits were calculated for the common regression line and the experimental points, with few exceptions, fell within these limits (Table III and Fig. 4). Results varied when different batches of thromboplastin were used and it was necessary to construct a standard curve for any given set of reagents.

In the case of the large molecular weight dextran sulphate (G.A) and heparin, a curvilinear relationship was obtained (Fig. 3). This could be transformed to a linear one by plotting the logarithm clotting time against concentration of added material (Fig. 3), thus facilitating the assessment of test solution values by reference to the standard curves.

It was observed that when very low (less than 1 µg. per 0.2 ml.) concentrations of dextran sulphate were added to the system there was an apparent pro-thromboplastic effect in that there was a shortening of the baseline clotting time. From these observations it was apparent that for the estimation of unknown concentrations of dextran sulphate in aqueous or protein solutions it was necessary to make several dilutions in saline to ensure a final concentration within the range of 2 to 10 µg. per 0.2 ml. of added solution. In practice it was found to be convenient to take the mean of the values obtained for two consecutive dilutions which fell within this range. The results of estimations of various concentrations of dextran sulphate (1/7) in the presence of protein are illustrated in Table IV.

With concentrations less than 0.004% of dextran sulphate in plasma unreliable results are obtained as the added neat or only slightly diluted plasma upsets the concentration of citrate ions, fibrinogen, prothrombin, and accessory clotting factors in the system.

Table IV

<table>
<thead>
<tr>
<th>Concentration added</th>
<th>Error percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>dextran sulphate (mg%)</td>
<td>200</td>
</tr>
<tr>
<td>Estimated concentration (mg%)</td>
<td>212.5</td>
</tr>
</tbody>
</table>

Fig. 4.—Antithromboplastic activity of dextran sulphate (I). Solid line: common regression for three runs. Interrupted line: 95% confidence limits for common regression. •, •, and X: mean experimental points for runs 1, 2, and 3 respectively.
Evaluation

The method provides a reasonable estimate of dextran sulphate in aqueous solution detecting as little as 0.0005% and requiring only 0.6 ml. for triplicate observations. In the presence of plasma, the method is still valid down to 0.004% dextran sulphate. It is primarily a method for the estimation of dextran sulphate in the presence of protein and no recovery of the material is possible. It has the disadvantage that estimates at various dilutions may be necessary in order to obtain a concentration somewhere within the range 2 to 10 μg. per 0.2 ml.

DISCUSSION

The estimation of acidic polysaccharides in "protein-free" solution presents little difficulty and can be undertaken readily using MacIntosh's (1941) method which measures the proportion of basic dye bound with polysaccharide. As already mentioned, the method is therefore applicable to the estimation of dextran sulphate in urine. In the presence of proteins, however, the intensity of the metachromatic reaction may be masked partly or completely on account of dye-protein competition. Furthermore, the protein interferes with the separation of the residual dye from the metachromatic complex on addition of petroleum ether, as a stiff viscous gel is produced.

Prevention of the protein interference by preliminary enzymic digestion was not possible, but the interesting fact was revealed that dextran sulphates inhibited the activities of trypsin and pepsin and thus resembled heparin (Horrett, 1940). Attempts to separate the dextran sulphates from protein before estimation in aqueous solution by preliminary precipitation of the proteins revealed that the usual protein precipitants such as trichloracetic acid were valueless. However, ammonium sulphate precipitation gave approximately 50% and the phenol method approximately 95% recoveries respectively, of known amounts of dextran sulphate added to plasma. The latter method had the disadvantage of being time-consuming, but gave consistently good recoveries and was the method of choice where actual recovery of dextran sulphate or an accurate estimate of concentration was required.

When it was necessary to obtain an approximate estimation of dextran sulphate concentration in the presence of protein, and where actual recovery of material was not of importance, the modified one-stage prothrombin technique was useful. Results were not so precise as those obtained with the phenol method. Nevertheless, this method was found to be useful for routine laboratory use where many approximate estimates of dextran sulphate were required in a short period.

The "prothromboplastin effect" of dextran sulphate in low concentrations noted here has also been reported by Forwell and Ingram (1956). They considered that it was due to an acceleration of the interaction between Factors V and VII and brain thromboplastin. This aspect has also recently been discussed by Hjort and Stormorken (1957).

SUMMARY

Estimations of dextran sulphates in "protein-free" solution were made accurately by MacIntosh's colorimetric method which depends upon the production of metachromasia with certain basic dyes. Traces of plasma proteins or isolated serum albumin were found to invalidate this technique. Attempts to remove plasma proteins by preliminary protein precipitation or enzyme digestion were not satisfactory. Precipitation with phenol was found to remove protein most efficiently and allowed the dextran sulphates to be recovered almost completely. Two methods for estimating dextran sulphate, whilst still in the presence of protein, were tested: the first, based upon measurement of the anti-complementary activity, was unsatisfactory; the second, based upon measurement of the anti-thromboplastin activity, proved useful where a rapid, but approximate, answer was required.

Our thanks are due to Dr. C. R. Ricketts, who supplied the dextran sulphates, Mr. M. Hall for analytical data on the heparin, and Professor J. R. Squire for helpful criticism. One of us (H. A. E.) was in receipt of a research grant from the United Birmingham Hospitals Endowment Fund.

REFERENCES

THE ESTIMATION AND RECOVERY OF DEXTRAN SULPHATES IN BIOLOGICAL FLUIDS

H. A. Ellis and K. W. Walton

J Clin Pathol 1959 12: 467-472
doi: 10.1136/jcp.12.5.467

Updated information and services can be found at:
http://jcp.bmj.com/content/12/5/467.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/