AN IMPROVED WHITE CELL DILUENT FOR USE WITH THE EEL ELECTRONIC BLOOD CELL COUNTER

BY

F. TAYLOR AND A. G. RICKARDS

From the Royal Infirmary, Lancaster

(RECEIVED FOR PUBLICATION DECEMBER 12, 1959)

An improved white cell diluent for use with the Eel electronic counter is described. It possesses advantages over previously described diluents in the rapidity of its action as a red cell stromalysin and in its ability to conserve surviving leucocytes for long periods of time. These properties enable counts to be made either immediately after preparation of the suspension or several hours later. The diluent is equally suitable for use with capillary or venous blood samples. When used for counting leucocytes it has been found necessary to effect a minor modification to the machine whereby the light intensity is reduced by approximately one-half.

The advantages of using electronic aids in the counting of red cells have been clearly established for some time, but as yet the counting of white cells has proved much less satisfactory because of difficulty in finding a suitable diluent. After several months’ trial with previously recommended diluents for the Eel and other electronic counters it became clear that none of them was ideal for routine use with the Eel counter, and accordingly an investigation was undertaken with the object of developing a white cell diluent which would conform to the following requirements: (a) It should be equally adaptable for both visual and electronic counting of leucocytes. (b) It should be capable of lysing red cells quickly so that counts could be made immediately after the suspension has been prepared. (c) The cell suspension should remain stable for at least 12 hours so that counts could be made several hours after preparation. (d) It should be equally adaptable for both capillary and venous blood samples.

After experimenting with a large number of different lysing agents we believe we have found a diluent which fulfils these criteria. It has also been our experience that the efficiency of the Eel machine in counting leucocytes is much improved by making a minor modification to the dark-field illumination.

Preparation ofSuspension

The following stock solution of diluent is prepared freshly each week:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cetrimide 40%</td>
<td>12.5 ml</td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td>5.0 ml</td>
</tr>
<tr>
<td>Formalin</td>
<td>10 ml</td>
</tr>
<tr>
<td>Aqua dist. ad</td>
<td>1,000 ml</td>
</tr>
</tbody>
</table>

From this stock solution a volume sufficient for one day’s use is filtered through sintered glass into a scrupulously clean glass container stoppered with rubber or glass. The importance of avoiding metal stops is emphasized, as it has been found that the diluent exerts a chemical action upon aluminium, causing the release of particles which may seriously affect the accuracy of the count. It is also important to avoid contamination by dust or other particles which may either interfere with the efficiency of the jets or register as leucocytes.

Cetrimide in acid solution has been found to be a very effective stromalysin, and leucocytes may be counted within seconds of mixing with the diluent, and remain unaffected for at least 24 hours at room temperature. If the mixture is stored at 4°C, accurate visual and electronic counts may be made after the lapse of several days. The solution is equally suitable for use with venous blood treated with “sequestrene” (E.D.T.A.) or capillary blood pipetted directly into the diluent. Oxalated blood is not suitable for use in the electronic counting of leucocytes. In common with other detergents cetrimide tends to froth when shaken vigorously; in practice this property has been found not to impair the accuracy of the counts in any way.

Various strengths of cell suspension have been used in this investigation, and it has been found that a dilution of 1 in 20 is the most satisfactory for routine use. Venous or capillary blood, 0.05 ml, is pipetted into 0.95 ml diluent and transferred to a small-bore sampling tube of approximately ½ in diameter. In order to avoid the introduction of cell debris from the skin of the finger the tubes are sealed with a clean rubber stopper before mixing. Counts may be made after the lapse of a few seconds or left overnight at room temperature and counted on the following morning.
Modification to Counter

For the accurate counting of white cells the sensitivity of the machine must be reduced to a point where small aggregates, such as red cell debris, are not registered on the dark-ground field. Small particles of this size are normally included in the counting of red cells, but their number in relation to the total count is so small that their inclusion does not lead to any significant error. In the counting of a much smaller number of leucocytes this error cannot be permitted, and it is accordingly necessary to reduce the sensitivity of the machine by the simple device of reducing the intensity of the light source. This may be most easily accomplished by inserting a suitable resistance (approximately $\frac{1}{2}$ ohm) in the light circuit, or more simply by impeding the light path by the introduction of a neutral grey screen or iris diaphragm. It has been our experience that a reduction of approximately 50% in the light intensity permits the accurate counting of white cells over a

![Graph](https://via.placeholder.com/150)

Fig. 1.—Typical plateaux of leucocyte counts (dilution 1 in 20).

TABLE

<table>
<thead>
<tr>
<th>Dilution</th>
<th>Visual Count (Cells Counted)</th>
<th>Total Count $\times 10^6$</th>
<th>Mean of 5 Counts $\times 10^6$</th>
<th>Machine Count (Cells Counted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relationship Between 30 Visual and Electronic Leucocyte Counts at Varying Dilutions
range of discriminator settings comparable to that
normally achieved in counting red cells on the
unmodified machine (Fig. 1).

Comparison with Visual Counts
The accuracy of the mechanical counter has been
verified by comparison with 264 visual counts which
formed a sequential series of routine white cell
counts performed in the haematology department. In
all cases the visual counts were done before the
electronic, and both counts were carried out on the
same cell suspension. Each machine count was
computed as the mean of three readings. In 209 cases
a cell suspension diluted 1 in 50 was used, and in 55
cases a 1 in 20 dilution was employed. This investiga-
tion showed that 62.9% of the electronic counts fell
within ±1 standard deviation of the visual counts,
92% fell within ±2 s.d., and 99.2% fell within
±3 s.d.

A second investigation was then carried out with the
purpose of reducing the inherent error in both the
visual and electronic methods by counting a larger
number of cells than is usual in the routine technique.
Thirty samples of blood were visually counted for
their leucocyte content, the cases being divided into
three groups of 10 samples, diluted 1 in 10, 1 in 20,
and 1 in 50. The total number of cells visually
counted in each case varied from 274 to 943. From
the same suspensions electronic counts were then
made. Each count was repeated five times, and the
mean of each count was computed from three
samplings so that each suspension was fed into the
machine 15 times. The results of this investigation
are shown in the Table, where it will be seen that
very close correlation between the visual and elec-
tronic counts was achieved.

Discussion
Several diluents for the electronic counting of
white cells have been described, but all seem to
possess disadvantages of one sort or another.

Boxall (1959) suggested the use of the non-ionic
detergent “nonidet” P.40, but not only does this
solution become turbid, due to precipitated surf-
factant, on slight rises of temperature, but the
suspension is unstable, necessitating counting the
white cells within half an hour of preparing the
suspension. Richar and Breakell (1959), working
with the Coulter counter, recommended saponin
as a lysing agent. This diluent also possesses
serious disadvantages, for not only must counts be
completed within one hour of preparation but
occasional agitation must be carried out for 10 to
15 minutes before counting. We have ourselves
used various saponin-containing diluents and have
found them all greatly inferior to cetrimide
acetic acid diluent. Akeroyd et al. (1959) have
recently recommended “triton X 100” as a lysing
agent, but here also the cytolytic effect on leuco-
cytes was found to be too rapid to allow of a
reasonable interval between preparation of the
cell suspension and counting the cells (Richar
and Breakell, 1959).

The cetrimide acetic diluent recommended here
does not appear to possess any of these dis-
advantages, for while stromalysis of red cells is
almost immediate its cytolytic effect on white cells
is not apparent for at least 24 hours when kept at
room temperature.

A recently developed wetting agent, “hyamine
2389,” prepared by the Rohm and Haas Co. for
use with chemical auto analysers, has been tested
for its suitability as a white cell diluent, and
preliminary investigations suggest that it possesses
many of the advantages of cetrimide.

References
AN IMPROVED WHITE CELL DILUENT FOR USE WITH THE EEL ELECTRONIC BLOOD CELL COUNTER

F. Taylor and A. G. Rickards

doi: 10.1136/jcp.13.3.249

Updated information and services can be found at:
http://jcp.bmj.com/content/13/3/249

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/