THYMOLIPOMA: A BENIGN TUMOUR OF THE THYMUS GLAND

BY

A. J. SHILLITOE AND J. E. GOODYEAR

From the Department of Pathology, Hull Royal Infirmary, Hull

(RECEIVED FOR PUBLICATION MARCH 17, 1960)

An example of a thymolipoma is described and the literature reviewed.

Thymolipoma (or lipothymoma) is a benign tumour of the thymus gland consisting of fat and thymic tissue. The only symptoms it produces, if any, are the results of pressure on surrounding structures. It is not a common tumour. No example was found in the 67 thymic neoplasms studied by Thomson and Thackray (1957). Seventeen isolated reports have been found in the literature (Table I) and one more is presented here.

Case Report

The patient was an apparently healthy boy aged 7 years. He was referred to hospital because his general practitioner found persistent signs in the right lung after a mild respiratory infection. Radiographs showed an unusual rounded shadow to the right of, and continuous with, the mediastinum. Investigations were otherwise negative.

TABLE I

<table>
<thead>
<tr>
<th>Case No. and Author</th>
<th>Age of Patient (Years)</th>
<th>Sex</th>
<th>Weight of Tumour (g.)</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Lange (1916)</td>
<td>58 F</td>
<td></td>
<td>1,600 Not stated</td>
<td>Dyspnoea</td>
</tr>
<tr>
<td>(2) Yamanoi (1921)</td>
<td>42 F</td>
<td></td>
<td></td>
<td>Asymptomatic</td>
</tr>
<tr>
<td>(3) Andrus and Foot (1937)</td>
<td>13 M</td>
<td></td>
<td>2,235</td>
<td>Dyspnoea</td>
</tr>
<tr>
<td>(4) Hall (1949)</td>
<td>47 M</td>
<td></td>
<td>1,100</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td>(5) Schaner and Hodge (1949)</td>
<td>35 F</td>
<td></td>
<td>625</td>
<td>Dyspnoea</td>
</tr>
<tr>
<td>(6) Barity and Coury (1950)</td>
<td>40 F</td>
<td></td>
<td>350</td>
<td>..</td>
</tr>
<tr>
<td>(7) Fontaine et al. (1951)</td>
<td>24 F</td>
<td></td>
<td>750</td>
<td>..</td>
</tr>
<tr>
<td>(8) Bigelow and Epler (1952)</td>
<td>10 F</td>
<td></td>
<td>170</td>
<td>Cough</td>
</tr>
<tr>
<td>(9) Gross (1953)</td>
<td>14 M</td>
<td></td>
<td>Not stated</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td>(10) Rubin and Mishkin (1954)</td>
<td>19 F</td>
<td></td>
<td>750</td>
<td>Dyspnoea</td>
</tr>
<tr>
<td>(11) Guilfoil and Murray (1955)</td>
<td>22 M</td>
<td></td>
<td>540</td>
<td>..</td>
</tr>
<tr>
<td>(12) Dunn and Frkovich (1956)</td>
<td>47 M</td>
<td></td>
<td>6,000</td>
<td>Dyspnoea</td>
</tr>
<tr>
<td>(13) Falor and Ferro (1956)</td>
<td>24 F</td>
<td></td>
<td>2,268</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td>(14) Mackay-Dick et al. (1956)</td>
<td>36 M</td>
<td></td>
<td>1,142</td>
<td>..</td>
</tr>
<tr>
<td>(15) Ringertz and Lidholm (1956)</td>
<td>28 M</td>
<td></td>
<td>Not stated</td>
<td>..</td>
</tr>
<tr>
<td>(16) Unver (1957)</td>
<td>26 M</td>
<td></td>
<td></td>
<td>..</td>
</tr>
<tr>
<td>(17) Andritsakis and Sommers (1959)</td>
<td>Not stated</td>
<td></td>
<td>54</td>
<td>..</td>
</tr>
<tr>
<td>(18) Present case (1960)</td>
<td>7 M</td>
<td></td>
<td>154</td>
<td>..</td>
</tr>
</tbody>
</table>

After a few months' observation it was decided to explore the chest. A large fleshy mass was found attached to the right side of the pericardium extending from the diaphragm up to the superior vena cava, and appeared to be an enlarged right lobe of thymus. The thymic vein was large and drained into the vena cava. The whole gland was successfully dissected from the major vessels, phrenic nerve, and other structures, and the chest closed. Post-operative progress was good and the patient is now clinically and radiologically satisfactory.

Operation Specimen

The tissue weighed in all 154 g. The normal range of thymic weight for a child of this age is 15–55 g. (Boyd, 1932).

The material consisted of two irregularly shaped pieces, the larger 11.5 x 9 x 4.25 cm., representing the right lobe of the thymus. The smaller, which constituted the left lobe, measured 6.25 x 3 x 2 cm. and appeared to be normal tissue.

The larger specimen was pale pink on section. It was divided by very fine trabeculae into a few lobules and was spattered with a few petechial haemorrhages which were probably due to operative trauma. There were no cystic areas. It was slightly firmer than an ordinary lipoma.

Histology

The specimen from the left side is normal thymus.

The tumour from the right consists of intermingled lipomatous and thymic tissue. The proportions of the two vary from area to area, but otherwise sections from 10 different parts all show essentially the same picture. About three-eighths of the total specimen is fat and the remainder thymic tissue which does not show the normal cortical and medullary arrangement, although Hassall's corpuscles are quite numerous. No lymphoid follicles are present and there is no evidence of malignancy. At the border between thymic and fatty zones there is a thin condensation of fibrous tissue in some places, but in other areas the lymphocytes and epithelial cells fray out into the fat (Figs. 1 and 2). The fat is of well-differentiated adult type. A blood supply of normal vessels intersects the specimen.
Discussion

In pseudolipomatous hypertrophy of the pancreas (Beresford and Owen, 1957) there is a marked increase in fat, but the exocrine tissue is greatly reduced. In thymolipoma, however, the thymic tissue is increased in amount, as well as the fat. Some specimens have reached very large sizes (6,000 g. in the case of Dunn and Frkovich, 1956), and it would seem reasonable to regard them as neoplasms rather than hyperplasias, especially as the thymic tissue is not arranged in quite its normal orderly way. Hall (1949) thought that these tumours are probably best regarded as mixed tumours, and this view has been supported by others (Bigelow and Ehler, 1952; Guilfoil and Murray, 1955).

Growth appears to be very slow, and in one case (Schanher and Hodge, 1949) the tumour was known to be present for at least 10 years. It may well be that the origin always dates back to childhood. Except for the case of Andrus and Foot (1937), the biggest tumours have been in adults, and from the descriptions given one has the impression that fat is the more predominant in the older cases. Dunn and Frkovich suggest that the fat originates in an involuting hyperplastic gland, and they reject the term “thymolipoma” because they consider that if allowed to express their natural course these tumours will grow as lipomas whilst the glandular elements lose their proliferative tendency.

Rubin and Mishkin (1954) go so far as to suggest that all mediastinal lipomas originate in the thymus. This extreme view seems to us improbable, but further observations are needed to clarify the issues. It is interesting to note that five of the reported thymolipomas have occurred in one lobe only of the gland.

Our thanks are due to Professor R. A. Willis for encouragement and advice, to Mr. J. E. Wilson for permission to use the clinical notes, and to Mr. G. Tulloch for technical and photographic assistance.

REFERENCES

Fig. 1.—Fatty and thymic tissue, the latter showing Hassall’s corpuscles (haematoxylin and eosin, × 77).

Fig. 2.—Intermingled fatty and thymic tissue (haematoxylin and eosin, × 77).
THYMOLIPOMA: A BENIGN TUMOUR OF THE THYMUS GLAND
A. J. Shillitoe and J. E. Goodyear

doi: 10.1136/jcp.13.4.297

Updated information and services can be found at:
http://jcp.bmj.com/content/13/4/297.citation

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/