The life span of erythrocytes in iron-deficiency anaemia

I. J. TEMPERLEY AND A. A. SHARP

From the Department of Haematology, Radcliffe Infirmary, Oxford

SYNOPSIS Red cells, derived from 13 patients with iron-deficiency anaemia, were found to have a normal life span in the patients’ own circulations and those of normal volunteers.

The life span of iron-deficient red cells in circulating blood is assumed by most haematologists to be normal, yet the wide variety of shape and size adopted by iron-deficient red cells suggested that this might not be so.

Using the Ashby technique for measuring red cell survival, Brown, Hayward, Powell, and Witts (1944) have shown that normal red cells survive for a normal period when transfused into an iron-deficient patient, and iron-deficient red cells survive normally when transfused into a normal person (Kaplan and Zuelzer, 1950).

However, Rasch, Cotton, Griggs, and Harris (1958), using 51Cr-tagged iron-deficient red cells, reported a decreased red cell survival in 14 iron-deficient infants and, using the same method, Verloop, Van der Wolk, and Heier (1960) found a shortened life span in five out of six patients with iron-deficiency anaemia.

In view of these results, a further investigation of this problem was undertaken and the survival of iron-deficient red cells was studied, using the blood from 13 iron-deficiency patients.

METHODS

MEASUREMENT OF LIFE SPAN OF ERYTHROCYTES (51Cr) The method of labelling the erythrocytes was that described by Veall and Vetter (1958). The blood was added to an anticoagulant mixture in a universal container, 15 to 20 ml. of blood to 3 ml. of acid citrate dextrose. After centrifuging the supernatant plasma was removed and 2 to 3 ml. of this was added to 100 ml. sterile saline; the remainder of the plasma was discarded. Then 100 μC. 51Cr was added to the packed cells. The red cells were left at room temperature for 30 minutes before washing twice in the plasma-saline. The washed red cells were finally resuspended in plasma-saline to make a total volume of 18 to 20 ml.; the 51Cr-labelled red cells were injected intravenously, and the 100% sample was taken at 15 minutes. One more sample was taken at 24 hours, and the activity of all samples was estimated on an Ekco pillar scintillation counter. The results are expressed as the percentage 51Cr activity and not corrected for elution.

ESTIMATED BLOOD LOSS IN FAECE Faeces were collected for periods of 10 to 14 days and pooled into cartons which fitted the well of a plastic phosphor counter. The radioactivity of the faeces was measured and compared with the activity of appropriate standards, prepared from the patients’ own blood in similar cartons. From these standards the radioactivity/volume of faeces was related to millilitres of the patients’ blood.

ESTIMATION OF SERUM IRON Two methods were used (Bothwell and Mallet, 1955; Ramsay, 1954).

CLINICAL MATERIAL

The 13 patients were considered to have uncomplicated iron-deficiency anaemia. Patients with disseminated malignancy, renal and hepatic failure, infection, associated vitamin B12 deficiency, or folic acid deficiency states were excluded. Three of the patients selected for autotransfusion were bleeding from the gastro-intestinal tract and continued to do so throughout the study. The criteria used to substantiate the diagnosis of iron-deficiency anaemia were as follows:

A haemoglobin estimation of less than 11.5 g./100 ml. in women and 13.5 g./100 ml. in men (Dacie, 1956); a mean corpuscular haemoglobin concentration of less than 32%; a typical blood film of iron-deficiency anaemia; a serum iron level of less than 60 μg./100 ml.; a good response to iron therapy.

Table I represents the data collected to satisfy the above criteria. All the blood films showed the changes found in iron deficiency—anisocytosis, poikilocytosis, and hypochromia. Because of the uniformity of these findings they are not included in Table I. A serum bilirubin estimation was carried out in each case and the highest level was 0.3 mg./100 ml. Bogomolow’s screening test for urobiligen in the urine was negative in each case.

The survival of iron-deficient red cells from 10 patients
The life span of erythrocytes in iron-deficiency anaemia

TABLE I

CLINICAL FINDINGS IN CASES OF IRON-DEFICIENCY ANAEMIA

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Sex</th>
<th>Age</th>
<th>Clinical Cause</th>
<th>M.C.H.C. (%)</th>
<th>Serum Iron (mg. /100 ml.)</th>
<th>Occult Blood in Stools</th>
<th>Hb (g./100 ml. before treatment)</th>
<th>Treatment</th>
<th>Period between Hb Estimations (weeks)</th>
<th>Hb (g./100 ml. after treatment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>50</td>
<td>Post-gastrectomy</td>
<td>29</td>
<td>24</td>
<td>--</td>
<td>10-3</td>
<td>Oral iron</td>
<td>2</td>
<td>12-0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>45</td>
<td>Undiagnosed</td>
<td>28</td>
<td>13</td>
<td>--</td>
<td>11-4</td>
<td>Intravenous iron</td>
<td>5</td>
<td>14-5</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>20</td>
<td>Duodenal ulcer</td>
<td>43</td>
<td>--</td>
<td>+</td>
<td>6-9</td>
<td>Oral iron</td>
<td>4</td>
<td>14-5</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>70</td>
<td>Undiagnosed gastrointestinal bleeding</td>
<td>27</td>
<td>10</td>
<td>+</td>
<td>6-8</td>
<td>Oral iron</td>
<td>4½</td>
<td>12-9</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>31</td>
<td>Menorrhagia</td>
<td>27</td>
<td>11</td>
<td>--</td>
<td>7-5</td>
<td>Oral iron</td>
<td>12</td>
<td>10-2</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>47</td>
<td>Undiagnosed</td>
<td>26</td>
<td>33</td>
<td>--</td>
<td>7-3</td>
<td>Oral iron</td>
<td>4</td>
<td>11-1</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>38</td>
<td>Undiagnosed</td>
<td>25</td>
<td>41</td>
<td>--</td>
<td>6-7</td>
<td>Oral iron</td>
<td>6½</td>
<td>13-8</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>?</td>
<td>Poor diet</td>
<td>26</td>
<td>31</td>
<td>--</td>
<td>8-4</td>
<td>Intramuscular iron</td>
<td>6</td>
<td>11-5</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>46</td>
<td>Undiagnosed</td>
<td>28</td>
<td>19</td>
<td>--</td>
<td>10-9</td>
<td>Oral iron</td>
<td>2</td>
<td>12-4</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>37</td>
<td>Undiagnosed gastrointestinal bleeding</td>
<td>27</td>
<td>16</td>
<td>+</td>
<td>8-1</td>
<td>Oral iron</td>
<td>3</td>
<td>10-7</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>17</td>
<td>Gastrointestinal bleeding from aspirin</td>
<td>27</td>
<td>56</td>
<td>+</td>
<td>7-1</td>
<td>Oral iron</td>
<td>6</td>
<td>11-5</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>41</td>
<td>Gastrointestinal bleeding, undiagnosed</td>
<td>30</td>
<td>53</td>
<td>+</td>
<td>10-8</td>
<td>No treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>62</td>
<td>Post-gastrectomy</td>
<td>26</td>
<td>24</td>
<td>--</td>
<td>8-8</td>
<td>Intramuscular iron</td>
<td>2</td>
<td>10-9</td>
</tr>
</tbody>
</table>

was studied in the circulation of 10 non-anaemic volunteer patients. The normal precautions for preventing the transmission of infection and for cross-matching were observed.

RESULTS

In three cases the life span of 51Cr-tagged iron-deficient red cells was measured in the patients’ own circulation; in three cases, both in the patients and in a normal volunteer; and in the remaining seven cases in normal volunteers only (Table II).

The 50% chromium survival time (T_1) of tagged iron-deficient red cells in the patients' own circulation (Table II, column 1) varied between 25 and 30 days (with a mean of 26-8 days). The T_1 51Cr of the tagged iron-deficient cells in normal recipients was between 25 and 32 days (mean 28 days) (Table II, column 2), with two exceptions where the T_1 51Cr was abnormally short. In these two instances the initial drop of 51Cr activity was within the normal range (Figs. 1 and 2), and, when the slope of the initial drop was projected to cut the 50% line, the T_1 51Cr was 23 and 28 days respectively. But at approximately 18 days the amount of radioactive chromium remaining in the blood decreased rapidly to reach background in 25 and 25 days respectively.

In one instance it was possible to repeat the survival, using the same recipient, 82 days after the first experiment (Fig. 3). The patient had had the iron deficiency corrected by this time and Hb was 15-2 g./100 ml. The T_1 51Cr was three days and all radioactivity had disappeared from the recipient’s blood in 11 days.

Serological tests performed both before and after this cross-transfusion showed no demonstrable incompatibility between donor cells and recipient's serum. In addition, the recipient's serum was screened against a cell panel of known antigenic pattern, but no antibody could be detected.

ESTIMATION OF BLOOD IN FAECES Three auto-transfused patients had occult blood in the stools. In only one of these could any significant amount of radioactivity be found in the faeces after the injection of the 51Cr tagged red cells intravenously; the amount lost in this instance was estimated as 1·7 ml./day. This amount of blood loss would not alter the 51Cr survival in the blood to any significant degree.

DISCUSSION

The results obtained in this investigation show that the life span of iron-deficient red cells in the circulation
FIG. 1. The Cr survival, uncorrected for chromium elution, of red cells of patient No. 4 in a normal recipient on the first occasion. The continuous line represents the actual findings, the interrupted line the projection of the slope of the original rate of destruction.

FIG. 2. The Cr survival, uncorrected for chromium elution, of red cells of patient No. 5 in a normal recipient. The continuous line represents the actual findings, the interrupted line the projection of the slope of the original rate of destruction.

FIG. 3. The Cr survival, uncorrected for chromium elution, of red cells of patient No. 4 in the same recipient, 82 days after the first transfusion of 51Cr-labelled erythrocytes (see Fig. 1).
is normal, both in the iron-deficient patient and in the normal circulation.

In the two instances where cross-transfusion resulted in an abnormally short survival in the recipient, the pattern of the survival suggested that incompatibility developed in the recipient to the donor's cells after transfusion and in one case a subsequent survival study showed that this was the most probable explanation.

Although no conventional tests could define this incompatibility, either before or after these studies, similar phenomena have been reported by Mollison (1959), Loutit, Mollison, and Young (1943), and Jandl and Greenberg (1957), and may be encountered in about 30% of cases where a small amount of homologous blood is transfused into normal recipients (Mollison, 1959).

From these studies, survival of red cells in iron-deficiency anaemia would appear to be normal, but it has been shown that the plasma iron turnover in this anaemia is normal or increased (Bothwell, Callender, Mallett, and Witts, 1956). Pollycove (1959) deduced that in iron-deficiency anaemia where the mean red cell haemoglobin is reduced, this turnover must represent a daily haemoglobin production of above normal limits and, therefore, increased daily red cell production. If the survival of red cells in the peripheral blood is normal, then some red cells must be destroyed in the marrow before reaching maturity in the peripheral blood. This hypothesis of 'ineffective erythropoiesis' has been discussed by Witts (1961).

Our thanks are due to Professor L. J. Witts, Professor J. Chassar Moir, Professor J. A. Trueta, and Dr. E. F. Mason for permission to investigate their patients, and to Dr. M. M. Pickles for her advice and help relating to the serological aspects of this communication.

REFERENCES

The life span of erythrocytes in iron-deficiency anaemia

I. J. Temperley and A. A. Sharp

doi: 10.1136/jcp.15.4.346