Some observations on magnesium in cerebrospinal fluid

CHRISTOPHER PALLIS, IAIN MACINTYRE, AND HAROLD ANSTALL
From the Departments of Medicine and Chemical Pathology, Postgraduate Medical School, London

SYNOPSIS Investigation of 67 patients with neurological disorders (excluding meningitis) showed a mean level of Mg in cerebrospinal fluid of 1.93 ± 0.03 mEq./l. These figures are significantly lower than earlier figures published in the literature. Patients with polyradiculo-neuritis do not show the fall in cerebrospinal fluid Mg levels reported in cases of infective meningitis. The level of Mg in cerebrospinal fluid is maintained in the presence of low levels of plasma Mg.

As pointed out elsewhere (MacIntyre, 1963; Alcock, MacIntyre, and Radde, 1965), our knowledge of the physiology of Mg has remained scanty because based until recently on laborious and rather imprecise methods of estimation. A rapid and accurate flame spectrophotometric method is now available (Alcock, MacIntyre, and Radde, 1960; MacIntyre, 1961), and we have therefore re-examined some basic data relating to Mg in human cerebrospinal fluid and sought to extend them.

PREVIOUS OBSERVATIONS

Cohen (1927) first pointed out that Mg concentrations in human cerebrospinal fluid were on average 20 to 30% higher than in serum. This finding is even more remarkable when it is remembered that only some 70% of serum Mg is freely diffusible. Cohen’s original observations were later confirmed by McCance and Watchorn (1931, 1934) and by Hunter and Smith (1960).

Examining the serum and cerebrospinal fluid of 18 hospital in-patients suffering from a variety of neurological disorders, other than meningitis, Cohen (1927) found the mean serum Mg level to be 2.11 mEq./l.1 and the mean concentration in lumbar cerebrospinal fluid 2.70 mEq./l. McCance and Watchorn (1931), using the same technique, investigated 68 hospital in-patients (37 of them with parenchymatous neurosyphilis) and found mean values of 2.23 mEq./l. and 2.74 mEq./l. respectively. Hunter and Smith (1960), however, using a different microchemical method (Hunter, 1959) give figures nearly 20% lower. They found the mean concentra-

1 Values given in early papers (expressed in mg. per 100 ml.) have been converted into mEq./l. for comparison with more recent data.

Received for publication 7 May 1965.
Some observations on magnesium in cerebrospinal fluid

763

fluids. These facts seem so well established that we have not sought to confirm them. We have demonstrated, however, that in polyradiculo-neuropathy (Guillain-Barré syndrome), a disorder still sometimes suspected of being of infective origin, this breakdown of the 'cerebrospinal fluid plasma barrier' does not occur.

METHODS

We have performed simultaneous estimations of Ca and Mg in both plasma and cerebrospinal fluid in 67 patients suffering from a variety of neurological disorders. Samples were obtained during diagnostic lumbar punctures or during myelography or air encephalography. At the same time blood was collected into heparin, the plasma being promptly separated. Concentrations of Mg and Ca were determined by flame spectrophotometry (MacIntyre, 1961).

RESULTS AND DISCUSSION

The results are recorded in Table I. Three points seem worthy of comment.

1 In 50 patients suffering from psychoneurosis, cerebrovascular disease, cerebral tumours, idiopathic epilepsy, degenerative neurological disorders, and degenerative disorders of the spine with neurological complications, the mean cerebrospinal fluid Mg was 1.88 mEq. ± 0.03 mEq./l. There were no significant differences between the clinical subgroups. We confirm Cohen's (1927) original observation that in such cases the concentration of Mg is higher in cerebrospinal fluid than in plasma, although our readings for both are substantially lower than those of early investigators. It has been shown that in the dog radioactive 26Mg ions move rapidly and in both directions between plasma and cerebrospinal fluid (Oppelt, MacIntyre, and Rall, 1963). If the same applies to man the 'cerebrospinal fluid/plasma barrier' to Mg must be a functional, not a structural one.

2 Fifteen patients with polyradiculo-neuropathy (Guillain-Barré syndrome) were found to have a normal cerebrospinal fluid Mg (mean 2.09 mEq./l. ± 0.10). Their spinal fluids did not differ significantly in this respect from those obtained in the various types of non-infective neurological disorder. Unlike what happens in infective meningitis, the gradient between cerebrospinal fluid and plasma Mg is maintained in polyradiculo-neuropathy.

3 The concentration of Mg in cerebrospinal fluid may be maintained in the presence of a low plasma Mg. This has not been previously reported. Particularly interesting in this respect were our observations on two cases of infantile tetany.

ILLUSTRATIVE CASES

H.R. (H.H. 264653) A full-term female infant, born at home by normal delivery, was admitted eight days after birth. Forty-eight hours previously she had refused feeds and vomited. Later she had had three major seizures. Her general condition was good. The Moro response was excessively brisk and a positive Trousseau sign was noted. Serum Ca was 3.5 mEq./l., serum Mg 0.7 mEq./l.; cerebrospinal fluid Ca 2.1 mEq./l., cerebrospinal fluid Mg 1.8 mEq./l. She improved on parathormone and vitamin D and did not relapse when these were discontinued.

K.B. (H.H. 265381) A female infant, the second of twins, was born in hospital by assisted breech delivery. On the eighth day twitching was noticed in the right arm, right leg, and right side of the face. She had several further attacks in the next 48 hours. She was very irritable and the Trousseau sign was positive. Serum Ca was 3.8 mN., serum Mg 1.2 mEq./l., later falling to 0.9 mEq./l.; cerebrospinal fluid Ca 3.0 mEq./l., cerebrospinal fluid Mg 2.2 mEq./l. She responded promptly to parathormone and did not relapse when this was discontinued.

These two cases provide further evidence that cerebrospinal fluid is not a plasma ultrafilterate but is produced by mechanisms involving active transport.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>SUMMARY OF RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td>Number of Cases</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychoneurosis</td>
<td>7</td>
</tr>
<tr>
<td>Cerebral arteriosclerosis</td>
<td>5</td>
</tr>
<tr>
<td>Cerebral tumours (primary)</td>
<td>7</td>
</tr>
<tr>
<td>Idiopathic epilepsy</td>
<td>6</td>
</tr>
<tr>
<td>Disseminated sclerosis</td>
<td>5</td>
</tr>
<tr>
<td>Motor neurone disease</td>
<td>5</td>
</tr>
<tr>
<td>Syringomyelia</td>
<td>2</td>
</tr>
<tr>
<td>Trigeminal neuralgia</td>
<td>3</td>
</tr>
<tr>
<td>Spondylosis</td>
<td>10</td>
</tr>
<tr>
<td>Polyradiculo-neuritis (Guillain-Barré syndrome)</td>
<td>15</td>
</tr>
<tr>
<td>Infantile tetany</td>
<td>Case H.R.</td>
</tr>
<tr>
<td></td>
<td>Case K.B.</td>
</tr>
</tbody>
</table>

(later 0-9)
Christopher Pallis, Iain MacIntyre, and Harold Anstall

They illustrate a further point, namely, that even when seizures occur in magnesium-depleted patients, a low level of magnesium in the cerebrospinal fluid plays no part in their pathogenesis.

REFERENCES

——, —— (1934). Brain, 57, 333.
Some observations on magnesium in cerebrospinal fluid
Christopher Pallis, Iain Macintyre and Harold Anstall

J Clin Pathol 1965 18: 762-764
doi: 10.1136/jcp.18.6.762

Updated information and services can be found at:
http://jcp.bmj.com/content/18/6/762

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/