Fibrinolytic response of diabetics and non-diabetics to adrenaline

A. R. TANSER

From the Royal Sussex County Hospital, Brighton

SYNOPSIS

The fibrinolytic response of 30 diabetic patients and 35 non-diabetics to 0.5 mg. subcutaneous adrenaline was measured, using the dilute clot lysis test. With the exception of two patients out of six who were taking phenformin, who had a depressed response, the diabetics showed a similar increase in fibrinolytic activity to the non-diabetics. The diabetics in this series did not tend to have longer spontaneous lysis times than the non-diabetics, although this type of comparison may not be valid.

If patients with diabetes mellitus have abnormal fibrinolysis, this might be detected by measuring spontaneous lysis times under standard conditions, although there is considerable variation in the same patient from day to day. It might be more significant to demonstrate an altered response to a standard physiological stimulus, but no suitable test has yet been described. However, non-diabetics respond predictably to a subcutaneous injection of 0.5 mg. adrenaline (Tanser and Smellie, 1964), which provides a pharmacological stimulus to fibrinolysis. In this paper, the response of 30 diabetics to adrenaline is compared with the response of 35 non-diabetics.

MATERIAL AND METHODS

LYSIS TIME

The blood fibrinolytic activity was measured by a modification of the Fearnley dilute clot lysis time technique (Tanser and Smellie, 1964). A short lysis time indicated high fibrinolytic activity. Venous blood was taken before, and 20 minutes after, a subcutaneous injection of 0.5 mg. adrenaline.

THE PATIENTS

The diabetic patients were volunteers attending a diabetic clinic. The first sample of blood was taken approximately two hours after breakfast. The patients had taken their usual anti-diabetic treatment.

The non-diabetics were also volunteers, and blood was taken at a similar time.

The two groups were not closely matched. Patients were included in the experiment as they volunteered. The diabetics tended to be slightly older, but even so the two groups were roughly comparable.

RESULTS

INITIAL LYSIS TIME

There was no significant difference between the two groups (Fig. 1).

TABLE I

AGE IN YEARS OF DIABETICS AND NON-DIABETICS

<table>
<thead>
<tr>
<th>Age (yr.)</th>
<th>10-19</th>
<th>20-29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>60-69</th>
<th>70-79</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Non-diabetic</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Non-diabetic</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

Received for publication 14 December 1966.
A. R. Tanser

DIABETICS
Mean 4.4
S.D. 1.72

NON-DIABETICS
Mean 4.9
S.D. 1.76

FIG. 1. Distribution of initial lysis time of diabetics and non-diabetics.

RESPONSE TO ADRENALINE The lysis time 20 minutes after the injection was shorter than the initial lysis time. The reduction in lysis time was plotted against the initial time (Figs. 2 and 3). The reduction in lysis time was proportional to the initial lysis time. The regression for non-diabetics was $y = -0.06 + 0.6338x$ ($r = 0.8541$); and for diabetics $y = -1.0 + 0.6872x$ ($r = 0.7943$). These results are not significantly different.

Two diabetics responded poorly to adrenaline. Both these patients were taking phenformin. Four other diabetics were taking phenformin, and these responded as expected. The two patients who responded poorly were tested in more detail on three occasions. One subsequently had a larger response to adrenaline, but the other again had a diminished and delayed response. Two normal subjects were tested with adrenaline before and after phenformin 25 mg. thrice daily for one week (Table II). There was no significant change.

FIG. 2. The reduction in lysis time 20 minutes after 0.5 mg. adrenaline in 35 non-diabetics. $y = -0.06 + 0.6338x$; $r = 0.8541$.

FIG. 3. The reduction in lysis time 20 minutes after 0.5 mg. adrenaline in 30 diabetics. Closed circles indicate patients taking phenformin; open circles, chlorpropamide; and crosses, insulin. $y = -1.0 + 0.6872x$; $r = 0.7943$.

DISCUSSION

These results suggest that diabetic patients respond to injected adrenaline with the same increase in fibrinolysis as non-diabetics.

It is not possible to conduct a strictly controlled comparison between diabetics and non-diabetics because most diabetics require treatment with insulin, sulphonylureas, or phenformin, all of which

TABLE II

THE RESPONSE TO ADRENALINE BEFORE AND AFTER PHENFORMIN 25 mg. THRICE DAILY FOR ONE WEEK

<table>
<thead>
<tr>
<th>Subject</th>
<th>Before Phenformin</th>
<th>After Phenformin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial Lysis Time (hr.)</td>
<td>Reduction (hr.)</td>
</tr>
<tr>
<td>S.W.</td>
<td>4.0</td>
<td>2.3</td>
</tr>
<tr>
<td>A.T.</td>
<td>4.0</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Fibrinolytic response of diabetics and non-diabetics to adrenaline

This study was supported by a grant from the South-Eastern Metropolitan Regional Hospital Board.

I am grateful to Dr. C. Barrington Prowse and Dr. J. K. Wagstaff who allowed me access to their patients. Dr. Clifford Riley and Mr. John Cook gave me generous laboratory facilities and help. Mrs. Sandra Walton measured the lysis times.

I am grateful to Professor W. M. Davidson and Dr. P. T. Flute for valuable criticism.

REFERENCES

Fibrinolytic response of diabetics and non-diabetics to adrenaline

A. R. Tanser

doi: 10.1136/jcp.20.3.231

Updated information and services can be found at:
http://jcp.bmj.com/content/20/3/231

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/