Postmortem detection of inapparent myocardial infarction

J. G. McVIE

From the Department of Pathology, University of Edinburgh

SYNOPSIS Two methods of detecting early inapparent myocardial infarcts have been studied and their value in diagnostic practice compared.

The better method proved to be the determination of the potassium to sodium ratio (ionic ratio) which falls in infarcted tissue within minutes of the onset of anoxia. The second method was nitro blue tetrazolium staining of gross sections of myocardium which revealed any infarct older than three and a half hours. As staining is dependent upon enzyme activity, the latter method is disturbed by autolysis. It was shown, on the other hand, that the ionic ratio ($K^+$/Na$^+$) was not affected by autolysis and was therefore well suited to forensic practice.

Sixteen non-infarcted control hearts, plus the nine from cases of sudden death due to causes other than myocardial infarction, all yielded high ionic ratios ($K^+$/Na$^+$), average 1-4, and stained normally with tetrazolium (the normal controls). Positive control was provided by 20 histologically proven infarcts of which the ionic ratios ($K^+$/Na$^+$) were all low (average 0-7). Histochemical staining with tetrazolium delineated infarcted areas in each case.

In a series of 29 sudden deaths, a cause of death other than myocardial infarction was found at necropsy in nine, mentioned above as normal controls. The remaining 20 hearts were not infarcted histologically, but were shown to be infarcted by examination of the ionic ratios ($K^+$/Na$^+$). These ratios were low (average 0-8) including three borderline ratios. Confirmatory evidence of infarction included nitro blue tetrazolium staining which revealed infarcts in 10 of the 20 cases, and clinical and necropsy observations.

The ionic ratio ($K^+$/Na$^+$) decreases as the age of the infarct increases for at least 24 hours. Thereafter as healing proceeds, the ratio gradually reverts to normal. Thus, previous infarction and replacement fibrosis do not significantly alter the ionic ratio ($K^+$/Na$^+$). Nor is it changed by left ventricular hypertrophy, the presence of congestive cardiac failure, or digitalis therapy.

It is suggested that macroscopic tetrazolium staining is a useful screening test for early inapparent myocardial infarcts. In cases where no infarct is delineated with that method estimation of the ionic ratio ($K^+$/Na$^+$) should be carried out on myocardium removed from standard areas on the anterior and posterior left ventricular walls.

Sudden death can be caused by an ischaemia of the myocardium. If death is rapid an infarct may not be detected at necropsy. Its presence can be presumed from circumstantial evidence only. Even the finding of fresh thrombus occluding a coronary artery is not proof of subsequent infarction. Indeed Baroldi (1965) suggests that thrombosis may be a terminal event whose significance depends on the degree of collateral supply. Often the pathologist's diagnosis has to depend on a clinical history, and in sudden collapse even that may not be available.

At necropsy, naked-eye or histological examination can be valid if 12 hours or more have elapsed between the onset of symptoms and death.
The truly objective morphonuclear evidence, polymorphonuclear invasion, usually takes over 18 hours to develop.

Two methods, one histochemical, one biochemical, have been described to assist in the recognition of early infarcts. The histochemical technique detects the loss of certain intracellular enzymes shortly after cell death. Thus microscopic (Nachlas and Shnitka, 1963; Morales and Fine, 1966) and macroscopic (Ramkissoon, 1966) stains for various dehydrogenases have been applied to early infarcts. Colourless nitro blue tetrazolium (Nitro BT) is reduced to a blue formazan by cellular dehydrogenases. Healthy cells therefore stain blue and those damaged by infarction do not. An infarct, some hours old, may be delineated easily to the naked eye on a transventricular slice of heart incubated with Nitro BT, provided that the cellular enzymes in the surrounding healthy tissue have not been inactivated by autolysis.

The biochemical method (Zugibe, Bell, Conley, and Standish, 1966) makes use of a change in the ratio of potassium ion concentration to sodium ion concentration ('ionic ratio' K+/Na+) in the myocardial infarct. It is known that potassium ions leave dead cells very rapidly due to their small molecular size (Russell, Crafoord, and Harris, 1961; Woodin and Wienke, 1964). Moreover as potassium ions leak out through the inactivated cell membrane sodium ions move in the opposite direction into the cells. Providing that the venous return remains satisfactory the migrating potassium ions will escape from the infarcted area. Simultaneously the sodium concentration of the tissue is increased (Jennings, Sommers, Kaltenbach, and West, 1964). Obviously the ionic ratio (K+/Na+) in the infarcted myocardium will fall markedly since the numerator and denominator in the ratio change in opposite senses. Changes in the ionic ratio (K+/Na+) have been recorded in the dog's myocardium as early as 10 minutes after coronary artery ligation (Zugibe et al, 1966). The biochemical method is therefore highly applicable to the early infarct.

Both gross Nitro BT staining and the ionic ratio (K+/Na+) were used in this study to examine a series of hearts from patients dying within 12 hours of the onset of symptoms of a myocardial infarction. After all the laboratory data had been collected the two methods were compared with the age of the infarct as suggested by the clinical history and necropsy findings. In this way their value as tests of early infarction was gauged.

Methods

Sixty-five hearts obtained from necropsies on patients who died in the Royal Infirmary of Edinburgh were examined. Twenty-nine of them were from cases of sudden death within 12 hours of the onset of symptoms suggestive of myocardial infarction. A group of 20 clinically proven myocardial infarctions provided positive controls and a random series of 16 non-infarcted hearts provided negative controls.

The coronary arteries, as far as their terminal visible branches, were dissected from the underlying myocardium and fixed in formol-saline. They were then chopped into consecutive 2 cm-long segments which were embedded and cut in longitudinal histological section. Next, serial transventricular slices, 4 mm thick, were made through the heart. On adjacent slices, gross tetrazolium staining, ionic ratio estimations, and histological sectioning were carried out.

DETERMINATION OF THE IONIC RATIO (K+/Na+)

Samples for estimating ionic ratio (K+/Na+) were taken from defined areas on the anterior and posterior walls of the left ventricle. On the anterior wall pieces were removed from a standard point deep to the anterior descending branch of the left coronary artery and 5 cm from its origin. However, on the posterior left ventricular wall the arterial supply is insufficiently constant to act as a reliable reference and the coronary sinus was used instead. Accordingly, samples of the left ventricle were taken at a level of 6 cm from it and adjacent to the interventricular septum.

In each case the block removed was a centimetre cube of muscle approximately 1 g in weight, and it was immediately trimmed of all fat, blood clot, pericardium, and endocardium.

When necessary the tissue was wrapped in aluminium foil and stored at -20°C: experiments failed to show any effect of storage on the ionic ratio.

The trimmed tissue was chopped into small pieces and weighed on a torsion balance. Deionized distilled water, which was used to wash all instruments and containers, was added to give a weight to volume ratio of 1:20. The heart mixture was homogenized for 10 minutes at room temperature in a Waring blender, followed by five minutes in a ground glass homogenizer. The cell debris was spun down at 1,000 rpm for 10 minutes and analysis of sodium and potassium was carried out on 1 in 10 and 1 in 50 dilutions of the supernatant, respectively. The dilutions were tested against both separate and mixed standards of sodium and potassium in an EEL flame photometer.

GROSS TETRAZOLIUM STAINING

The method described by Ramkissoon (1966) was used. A solution of Nitro BT, 1 part, phosphate buffer pH 7-4, 1 part, and distilled water, 8 parts, was warmed to 37°C. The myo-
cardiac slices were then immersed in it and the temperature was maintained for 30 minutes. Any lesions noted were sketched for inclusion in the pathologist's notes.

**AUTOLOGY STUDY**

Five pieces of normal myocardium were kept under different conditions for three weeks in sealed glass jars. In four of the jars, the myocardia were stored alone at 0°C, 5°C, room temperature, and 37°C respectively. In the fifth jar the myocardium was immersed in water at a temperature of 5°C. At intervals during the three weeks, an aliquot was cut from each sample for ion determination. The piece of heart kept at 37°C smelled so objectionably after one week that it had to be removed from the laboratory before the end of the experiment. The experiment was repeated with pieces of infarcted myocardium.

**Results**

**IONIC RATIOS (K+/Na+)**

**Normal hearts**

The 16 control hearts were free from any recent myocardial infarction though over half of them showed hypertrophy or chronic fibrosis (Table I).

<table>
<thead>
<tr>
<th>Factor</th>
<th>No. of Cases</th>
<th>Range of Ratios</th>
<th>Average Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ventricular hypertrophy</td>
<td>8</td>
<td>1.3-1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Chronic fibrosis</td>
<td>6</td>
<td>1.2-1.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Congestive cardiac failure</td>
<td>10</td>
<td>1.1-1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Digitalis therapy</td>
<td>5</td>
<td>1.1-1.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Hyperkalaemia</td>
<td>2</td>
<td>1.1-1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>External cardiac massage</td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>1.1-1.7</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Table I  Effects of various factors on ionic ratios (K+/Na+) in normal control hearts

They were taken at random from routine necropsies. The average ionic ratio (K+/Na+) was 1.4 (Table II). There are various different figures

<table>
<thead>
<tr>
<th>Group of Hearts</th>
<th>No. of Cases</th>
<th>Range of Ratios</th>
<th>Average Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>25</td>
<td>1.1-1.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Proven infarcts</td>
<td>20</td>
<td>0.4-1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Suspected infarcts</td>
<td>20</td>
<td>0.3-1.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table II  Ionic ratios (K+/Na+) of all hearts examined in the series

for ionic ratios (K+/Na+) in normal left ventricle (Table III). All the values quoted were determined by different techniques and the standard deviations vary accordingly. The deviation calculated in the ionic ratio (K+/Na+) for the results was ± 0.05. The differences in electrolyte composition of the chambers of the heart are clearly brought out in the table and justify confining the analysis to standard regions.

**Proven myocardial infarcts**

In 20 hearts which showed macroscopic and microscopic features of infarction the range of ionic ratios (K+/Na+) was from 0.4 to 1.1 (average 0.7). All the hearts came from patients who had suffered from chest pain or dyspnoea or who had collapsed more than 12 hours before death. Polymorphonuclear infiltration and loss of nuclei in necrotic cells were taken to be significant histological features of infarction.

It seemed that the critical value of the ionic ratio (K+/Na+) between the normal myocardium on the one hand and the infarcted on the other was 1.1 (Table II). A ratio above 1.1 could be taken as normal, whereas values below 1.1 came from myocardial infarcts.

**Suspected infarcts**

Twenty-nine cases of suspected myocardial infarction leading to death within 12 hours were scrutinized. Nine of these had normal ionic ratios (K+/Na+), and were proved at necropsy to have died from causes other than myocardial infarction (Table IV). The ionic ratios (K+/Na+) of the remaining 20 hearts were lower than 1.1, ie, the ratios confirmed the presence of

<table>
<thead>
<tr>
<th>Cause of Death</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary embolism</td>
<td>3</td>
</tr>
<tr>
<td>Cerebral haemorrhage</td>
<td>3</td>
</tr>
<tr>
<td>Bronchopneumonia</td>
<td>2</td>
</tr>
<tr>
<td>Acute pulmonary oedema</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
</tr>
</tbody>
</table>

Table IV  Cause of sudden death in control hearts
found in the unaffected part of the ventricle. In older infarcts in the series the surrounding normal-looking myocardium showed slight alterations in the ratio in the direction of infarction. The reasons for this will be explored in the discussion.

**GROSS TETRAZOLIUM STAINING**

Areas of early infarction, not visible to the naked eye, are revealed in a transventricular section of the heart by failure to stain purple after incubation with Nitro BT. Positive results (absence of staining) were obtained in all infarcts older than 12 hours. Ten cases out of 20—all of shorter duration than 12 hours and inapparent at necropsy—gave a conclusive result (Table VI). The earliest inapparent infarct revealed by the stain was three and a half hours old.

<table>
<thead>
<tr>
<th>Table V</th>
<th>Circumstantial evidence in support of relationship of low ionic ratio to myocardial infarction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items of Evidence</td>
<td>No. of Cases</td>
</tr>
<tr>
<td>Collapse and shock</td>
<td>12</td>
</tr>
<tr>
<td>Chest pain</td>
<td>6</td>
</tr>
<tr>
<td>Postoperative death</td>
<td>2</td>
</tr>
<tr>
<td>Congestive cardiac failure</td>
<td>13</td>
</tr>
<tr>
<td>Electrocardiographic evidence</td>
<td>4</td>
</tr>
<tr>
<td>Arrhythmias</td>
<td>5</td>
</tr>
<tr>
<td>Raised serum transaminases</td>
<td>2</td>
</tr>
<tr>
<td>History of previous infarction</td>
<td>9</td>
</tr>
<tr>
<td>History of previous valvular disease</td>
<td>4</td>
</tr>
<tr>
<td>Coronary artery occlusion at necropsy</td>
<td>11</td>
</tr>
<tr>
<td>Delineation of infarct by Nitro BT stain</td>
<td>10</td>
</tr>
<tr>
<td>Total number of cases</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table VI</th>
<th>Comparison of nitro blue tetrazolium staining and ionic ratio (K⁺/Na⁺) in early myocardial infarcts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitro Staining</td>
<td>Positive</td>
</tr>
<tr>
<td>Number of cases</td>
<td>10</td>
</tr>
<tr>
<td>Range of ratios</td>
<td>0.3-0.9</td>
</tr>
<tr>
<td>Average ratio</td>
<td>0.7</td>
</tr>
</tbody>
</table>

**AUTOLYSIS STUDY**

The results of the autolysis experiments are summarized in Table VII. The ionic ratios (K⁺/Na⁺) were reliable in the frozen tissue samples.

<table>
<thead>
<tr>
<th>Table VII</th>
<th>Changes in ionic ratio (K⁺/Na⁺) with time of storage in different environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions of Storage</td>
<td>Days after Death</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>(Necropsy)</td>
<td></td>
</tr>
<tr>
<td>−20°C, normal</td>
<td>1.6</td>
</tr>
<tr>
<td>−20°C, infarct</td>
<td>0.5</td>
</tr>
<tr>
<td>+5°C, normal</td>
<td>1.6</td>
</tr>
<tr>
<td>+5°C, infarct</td>
<td>0.8</td>
</tr>
<tr>
<td>+5°C + water, normal</td>
<td>1.6</td>
</tr>
<tr>
<td>+5°C + water, infarct</td>
<td>0.8</td>
</tr>
<tr>
<td>Room temperature, normal</td>
<td>1.6</td>
</tr>
<tr>
<td>Room temperature, infarct</td>
<td>0.8</td>
</tr>
<tr>
<td>+37°C, normal</td>
<td>1.6</td>
</tr>
<tr>
<td>+37°C, infarct</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Similarly, when kept at 5°C, results were consistently accurate. The changes in the tissues at room temperature and at 37°C follow the pattern of those in water at 5°C. Thus the normal myocardium lost some sodium together with at least twice as much potassium. The ionic ratio \((K^+/Na^+\)\), therefore, dropped. The infarcted hearts, on the other hand, lost their excess of sodium, and, having little potassium left to lose, showed an increase in the ionic ratio \((K^+/Na^+)\). The changes are paralleled by the onset of liquefaction in the heart muscle. The ionic ratios \((K^+/Na^+)\) in the three groups just compared were all approaching unity, perhaps due to attainment of equilibrium with the surrounding liquids.

Discussion

IONIC SHIFTS IN MYOCARDIAL INFARCTS

The electrolyte changes in myocardial infarcts found during this work are supported by other investigations. By producing coronary insufficiency in dogs, Crout and Jennings (1957) noted a loss of potassium from the ischaemic tissue, first detectable an hour after induction of the infarct. Lowry, Gilligan, and Hashings (1942), also working with dogs, noticed an increase in the sodium content of the infarcted myocardium which accompanied potassium depletion. By cannulating the coronary sinus of dogs, Dennis and Moore (1938) were able to measure a rise in the serum potassium level of blood samples removed from it seven minutes after ligation of a coronary artery.

Russell et al (1961) calculated that oedema fluid provided less than a quarter of the excess sodium ions in an infarcted piece of myocardium. Therefore a rise in intracellular sodium concentration must account for the extra ions. The continued shift of sodium into the cells depends upon the ability of the collateral circulation to make it available to the extracellular fluid. At the same time potassium ions are lost from the cells into the surrounding medium whence they gain the efferent vasculature and ultimately the coronary sinus (Dennis and Moore, 1938).

There are three important concepts of the ion exchange mechanism observed in the dying cell. First, Woodin (1960) claims that an increase in membrane permeability is the initial response of the cell to anoxia. Such an increase would permit sodium ions to move into the cell and potassium ions to move out as happens normally in the depolarization of muscle and nerve. In the normal living cell the activity of the 'sodium pump' expels sodium ions and thus opposes the ionic shifts of cell damage.

Supporting evidence comes from Elsbach and Schwartz (1959) who claim that potassium leaves the damaged cell two hundred times faster than normal. To explain so rapid a loss they consider that a gross increase in cellular permeability is necessary.

The second view is due to Judah and Ahmed (1964), who proposed that direct inhibition of the 'sodium pump' is the first step in the process of cell death. They state that calcium ions are mobilized from the cell membrane by injury and that they inhibit the ATP-ases essential to the supply of energy to the pump. Judah and Ahmed do admit, however, that when calcium ions leave the cell membrane it also becomes more permeable. Thus the theories of Woodin and Judah and Ahmed are complementary rather than opposed.

The third concept also involves the loss of activity in the sodium pump. Cell lysosomes are thought to be disrupted within seconds of the onset of anoxia (Hirsch, Bernheimer, and Weissmann, 1963). Hydrolytic and other destructive enzymes are released and are thought to inhibit the mechanisms of the sodium pump.

Apparently elements of all three theories might form the true mechanism of loss of potassium and gain in sodium in the infarcted tissue.

COMPARISON OF DIAGNOSTIC AIDS

Ionic ratios

The measurement of the myocardial ionic ratio \((K^+/Na^+)\) proved to be extremely useful in the diagnosis of early infarcts. Seventeen out of 20 cases showed a clear-cut difference between normal and abnormal ionic ratios, viz., less than 1:0. Three had ratios of 1-1, whereas one of 25 control hearts had that value. The remaining 24 were greater than 1-2. The figures suggested that the age of an infarct, at least for the first 12 hours, could be estimated roughly by the value of the ionic ratio \((K^+/Na^+)\); as the lesion ages the ionic ratio \((K^+/Na^+)\) becomes more abnormal.

Also the extent of the infarct as measured by the ionic ratio \((K^+/Na^+)\) becomes greater with age. It seems that in ischaemia ionic shifts are not confined to the apparent infarct but take place also in the surrounding viable myocardium. These changes are similar to those in the fresh infarct but take longer to appear and are not so pronounced.

Sampling five specific points in numerous infarcted hearts, Iseri, Alexander, McCaughey, Boyle, and Myers (1952) calculated that the ionic ratios \((K^+/Na^+)\) were always lower than those of his control group, independent of the site or size of the infarct.

It may be that the changes described are due to a compensatory effect by myocardium adjacent to an infarct in an attempt to stabilize the cation distribution in the extracellular fluid. A simpler solution may be that the apparently normal
myocardium is, in fact, ischaemic. Perhaps obvious
infarcts are much more extensive than is usually
thought, and the abnormal electrolytes are demon-
strating early, possibly terminal, ischaemia through-
out the myocardium.

The autolysis study points out that the ionic
ratio (K+/Na+) remains an accurate guide to
normality or infarction until autolysis has
advanced to the stage of liquefaction (Table VII).
In addition, storage at 0°C maintains the elec-
trolyte state of the tissue for long periods.

Several pathological states may influence the
ionic composition of the myocardium, e.g.,
congestive cardiac failure (Calhoun and Harrison,
1931), digitalis administration (Daniel, 1964),
and left ventricular hypertrophy (Ledingham,
1957). It will be noticed from Table I that none
of the above seem to have affected the ratios
in the control group. Some of the hearts suffered
from more than one of the conditions mentioned
without significant disturbance of the ionic
ratios (K+/Na+).

The findings are in keeping with those of
Scott (1930), Lowry et al (1942), and Bliss and
Adolph (1963) who claim that although sodium
concentrations may rise in congestive heart failure
no potassium is lost, and the ionic ratio (K+/Na+)
is not therefore significantly altered. Further,
Klaus (1961) and Bliss and Adolph (1963) refute
the suggestion that correct digitalis therapy causes
loss of potassium from the myocardium. They
believe that potassium is lost only in overdosage.
Confirmation comes from the findings that the
extrasystoles of digitalis intoxication can be abolished
by potassium supplements (Sampson, Alberton,
and Kondo, 1943; Enselberg, Simmons, and Mintz,
1950). There is a similarity here to the find-
ings of Sodi-Pollares (1961) and Mittra (1965),
who recommend the use of potassium, insulin,
and glucose in the arrhythmias of infarctions.
However, recently, an MRC Working Party
(1968) have discredited such a regime.

Finally, the method involved in determining
ionic ratios (K+/Na+) is simple and can be carried
out in under an hour. It is more economical to
examine a batch of samples at one session.
The method has also been modified slightly for
autoanalysis of the heart homogenates, with
a considerable saving in labour.

Gross histochemical staining
Table VI shows that in 20 early infarcts the
Nitro BT test was positive in half of the series.
The 10 negative cases had histories of less than
three and a half hours. It is appreciated that
of necessity length of history may be inaccurate
for some patients.

Mapping of the inapparent infarct was
beautifully portrayed by the above technique,
and provided simple correlation with the area
of supply of an occluded coronary vessel or
ECG findings when present. The method takes
30 minutes and is easily carried out in the
necropsy room provided that a simple means of
incubation is available. It is unfortunately
invalidated by autolysis and thus is of less value
than the ionic ratio in medico-legal practice.
The cost of materials can be regulated so that
each test costs about three shillings.

I should like to thank Professor G. L. Montgomery
and Dr S. Fletcher, of the Department of Pathology,
for their helpful advice and assistance. The path-
ologists of the Royal Infirmary of Edinburgh kindly
allowed me to use necropsy material.

References
Baroldi, G. (1965). Acute coronary seclusion as a cause of
myocardial infarct and sudden coronary heart death.
_Amer. J. Cardiol.,_ 16, 859-880.
Bliss, A., and Adolph, R. J. (1963). Effect of experimental con-
gestive heart failure and acetyl strophanthin on myo-
cardial electrolyte and water content. _Circulat. Res.,_ 13,
207-217.
Brodie, B. B. (1951). Measurement of total body water. _Meth.-
heart failure. IX. The effect of digitalis on the potassium
content of the cardiac muscle of dogs. _J. clin. Invest.,_ 10,
139-144.
Clarke, N. E., and Mosher, R. E. (1952). The water and electro-
lyte of the human heart in congestive heart failure
with and without digitalization. _Circulation, _5, 907-914.
Crout, J. R., and Jennings, R. B. (1957). An improved histo-
chemical method for the demonstration of potassium.
_J. Histo-chem. Cytochem.,_ 5, 170-177.
and contracture in uterine tissues. _Canad. J. Physiol.
Pharm., _42, 453-495.
Dennis, J., and Moore, R. M. (1938). Potassium changes in
functioning heart under conditions of ischemia and of
congestion. _Amer. J. Physiol.,_ 123, 443-447.
Kalium- und Natriumbestimmungen von Leichenorganen
bei verschiedenen Erkrankung des Stoffwechsels. _Virch.
ows Arch. path. Anat.,_ 339, 316-326.
and potassium transport in rabbit polymorphonuclear
The effects of potassium upon the heart, with special
reference to the possibility of treatment of toxic arhythm-
ias due to digitalis. _Amer. Heart J., _39, 713-728.
Motion picture study of the toxic action of strolysins
Holland, W. C. (1964). Ion distribution and myocardial metabolism
as affected by cardiac glycosides. _Circulat. Res.,_ 14-15,
suppl. 2, 85-92.
Iseri, L. T., Alexander, L. C., McCaughey, R. S., Boyle, A. J.,
and Myers, G. B. (1952). Water and electrolyte content of
cardiac and skeletal muscle in heart failure and myocardial
Jennings, R. B., Sommers, H. M., Kaltenbach, J. P., and West,
J. J. (1964). Electrolyte alterations in acute myocardial
ischemic injury.
Klaus, W. (1961). In Proceedings of First International Phar-maco-
logical Meeting, edited by W. Wilbrant, p. 111. _Pergamon
Press, New York._
Ledingham, J. M. (1957). Disturbances in water and electrolyte
metabolism in experimental hypertension. _Brit. med. Bull.,_
13, 33-38.
Histochemical changes in the myocardium of dogs follow-
ing experimental temporary coronary arterial occlusion.
_Amer. J. Physiol.,_ 136, 474-485.
Medical Research Council Working Party (1968). Potassium,
glucose, and insulin treatment for acute myocardial
infarction. _Lancet, _2, 1355-1360.
Mittra, B. (1965). Potassium, glucose and insulin in treatment of


Postmortem detection of inapparent myocardial infarction

J. G. McVie

doi: 10.1136/jcp.23.3.203

Updated information and services can be found at:
http://jcp.bmj.com/content/23/3/203

**Email alerting service**

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/