Macrocystosis in Down's syndrome and during long-term anticonvulsant therapy

R. D. EASTHAM AND J. JANCAR

From the Department of Pathology, Frenchay Hospital, Bristol, and Stoke Park Group of Hospitals, Bristol

SYNOPSIS In a group of non-anaemic mentally retarded patients a significant increase in mean red cell volume has been demonstrated in epileptic patients being treated with anticonvulsants. The possible sites of interference of anticonvulsants with folate activity in the body, and problems associated with folic acid supplements during anticonvulsant therapy, are discussed.

During the survey it was confirmed that the mean red cell volume is abnormally increased in many cases of Down's syndrome.

Long-term anticonvulsant therapy has been shown to be associated with correctable folate deficiency, erythrocyte macrocystosis, and frank megaloblastic anaemia in some cases (Dahlke and Roesler-Mertens, 1967; Hawkins and Meynell, 1958; Klipstein, 1964; Malpas, Spray, and Witts, 1966; Miller, 1968; and Reynolds, Mollin, Matthews, and Chanarin, 1966). Past reports of the response of such affected patients with folate supplements have varied from marked clinical improvement on the one hand, to the possibility of increase in both the frequency and severity of epileptic attacks (Chanarin, Mollin, and Anderson, 1958; Druskin, Wallen, and Bonagura, 1962; Hawkins and Meynell, 1958; Reynolds, 1967).

In a dietary experiment in which folate deficiency was induced in normal volunteers it was found that serum folate activity fell below normal after three weeks, hypersegmented polymorphonuclear neutrophils appeared in peripheral blood after seven weeks, whilst macroovalocytosis of the erythrocytes was only detected by about 18 weeks, and frank megaloblastic anaemia was present after 19 weeks (Herbert, 1964).

Since macrocystosis suggests unsuspected folate deficiency in patients treated with anticonvulsants, it was decided to measure the mean red cell size in non-anaemic mentally retarded patients, using a rapid and accurate electronic particle counter to avoid either tedious visual red cell counting or visual assessment of macrocystosis on stained blood films. Macrocystosis has also been reported in patients with Down's syndrome (Naiman, Oski, and Mellman, 1965). Results from patients with Down's syndrome were therefore included in this study (Eastham and Jancar, 1969), confirming this isolated report.

Methods and Materials

PATIENTS Of a total of 740 non-anaemic mentally retarded patients, aged 21-65 years inclusive, 130 female and 134 male patients were subject to epileptic attacks and were under treatment with anticonvulsants, including phenobarbitone, amylodobarbitone sodium, primidone, troxidone, phenytoin sodium or methoin, singly or in various combinations. Two hundred and nineteen female and 165 male patients in the same hospital group were not epileptic subjects and were not treated with anticonvulsants. In addition, there were 47 female and 45 male patients suffering from Down's syndrome who were not epileptic and not being treated with anticonvulsants. The age distributions of the patients in these
patients was found to be larger than that in a group of non-mongoloid patients, and it was reported that the rates of flux of sodium and potassium across the red cell membrane are greater than normal in mongoloid subjects (Baar and Gordon, 1961).

In both male and female patients there was a significant increase in mean red cell volume when anticonvulsants were being taken, the mean red cell volume in epileptic females being marginally above the upper limit of the normal range. Previous reports of macrocytosis resulting from treatment with anticonvulsants have depended on visual assessment of stained blood films (Klipstein, 1964; Miller, 1968; Reynolds et al., 1966) or on visual red cell counts made using haemocytometers (Hawkins and Meynell, 1958; Malpas et al., 1966). In the present study over 1,000 blood samples were tested. Since each red cell count (involving the electronic counting of 40,000 to 50,000 red cells in 0·5 ml diluted blood) took approximately 12 seconds, with a coefficient of variation of less than 2·0%, no excessive extra laboratory work was involved, compared with tedious serum folate activity estimations.

Macrocytosis and reduced serum folate activity tend to develop during long-term treatment with anticonvulsant drugs, and folate supplements result in the return of serum folate activity to normal and in a reduction in macrocytosis (Dahlke and Roesler-Mertins, 1967; Girdwood and Lenman, 1956; Hawkins and Meynell, 1958; Ibbotson, 1967). The present study demonstrates the appearance of detectable macrocytosis in the absence of anaemia, which may be presumed to be associated with mild folate deficiency.

It has been suggested that similarities in molecular structure of anticonvulsants and folic acid could account for their interference with folic acid metabolism (Herbert and Zalusky, 1962), but it is interesting that the addition of phenobarbitone, phenytoin sodium, and primidone in vitro do not affect the estimation of folic acid activity by *Strept. faecalis* (Girdwood and Lenman, 1956; Klipstein, 1964). It is also worth noting that the growth of *L. casei* activity is probably a better measure of biologically active folate derivatives in man (Herbert and Zalusky, 1962). Recent work by Dahlke and Roesler-Mertins (1967) has shown a further possible site of interference by phenytoin sodium. They have demonstrated that one patient, who developed megaloblastic anaemia but no other evidence of malabsorption, had impaired folate absorption from the gut whilst he was taking phenytoin sodium, folate absorption returning to normal when the drug was discontinued, the efficiency of folate absorption being related directly to the time since the last dose of phenytoin sodium.

Opinions on the desirability of repair of folate

Results

The mean cell volume in 384 mentally retarded patients not treated with anticonvulsants was 92·5 μ^3 (1 SD = 7·38 μ^3), in 264 mentally retarded patients under treatment with anticonvulsants it was 96·4 μ^3 (1 SD = 7·78 μ^3), and in 92 patients with Down’s syndrome it was 102·5 μ^3 (1 SD = 7·87 μ^3). No significant difference between results in the two sexes was found in each group. All three groups were significantly different from each other ($p < 0·001$).

Discussion

The findings of Naiman *et al* (1965) are confirmed, and the erythrocyte cell volume in both male and female patients with Down’s syndrome is found to be above the normal range. A possible explanation for such macrocytosis may be that the mean haematocrit in a group of mongoloid
deficiency during long-term anticonvulsant therapy have varied. Apart from the return of the blood picture to normal, folate therapy has been said to result in clinical improvement of patients, with improvement in mental state and in abnormal EEG readings (Druskin et al, 1962; Hawkins and Meynell, 1958; Reynolds, 1967) but with increased frequency or severity of seizures (Chanarin et al, 1958; Reynolds, 1967). The present study, by demonstrating the possibility of detecting early moderate folate deficiency during long-term anticonvulsant therapy in epileptic mentally retarded patients by means of rapid estimations of the mean red cell volume, without requiring serum folate activity estimations (which are very expensive in laboratory working time), should encourage further investigations into this very important problem in the management of epileptic patients. It also makes possible examination of red cell size in Down’s syndrome due to trisomy G, mosaicism, or translocation.

We are grateful to Mr W. A. Owen, FIMLT, and the staff under his supervision for continued careful work, to Dr G. Philpot for advice and assistance in the development of the method for checking the accuracy of the autodiluters, and to the staff of the Stoke Park Group for their cooperation and help.

References

Macrocytosis in Down's syndrome and during long-term anticonvulsant therapy
R. D. Eastham and J. Jancar

doi: 10.1136/jcp.23.4.296

Updated information and services can be found at:
http://jcp.bmj.com/content/23/4/296

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/