Effect of feeding fat on fibrinolysis, Stypven time, and platelet aggregation in Africans, Asians, and Europeans

J. C. FERGUSON, N. MACKAY, AND G. P. McNICOL
From Makerere University College Medical School Extension, Nairobi, and the University Department of Medicine, Royal Infirmary, Glasgow

SYNOPSIS The effects of acute fat feeding on fibrinolytic activity, platelet aggregation, and Stypven time in 10 Africans and 10 Asians are presented and compared with the results previously obtained in 10 Europeans.

These indicated that the inhibition of fibrinolytic activity seen in Europeans does not occur in either Africans or Asians although the Stypven time was shortened in all three groups.

Platelet aggregation, as measured by the Chandler's tube technique, was inhibited by fat feeding in Europeans but was unchanged in Africans and Asians.

The results also indicate that the fibrinolytic activity of Africans and Asians is greater than that of Europeans.

A relationship between thrombogenic mechanisms and atherosclerosis was originally suggested by Rokitansky (1852) and revised by Duguid (1946), who demonstrated that intravascular thrombus may be incorporated into the arterial wall leading eventually to the formation of an atheromatous plaque. On the basis of this hypothesis factors favouring intravascular coagulation might be expected to promote atherosclerosis whereas an increase in blood fibrinolytic activity might be expected to exercise a contrary influence.

A previous investigation (Dubber, Rifkind, Gale, McNicol, and Douglas, 1967) has confirmed that in Europeans acute fat feeding leads to a shortening of the Stypven time and also to inhibition of plasma fibrinolytic activity and platelet aggregation.

This investigation was designed to compare the effects of a high-fat meal on the plasma fibrinolytic activity, blood coagulation, and platelet aggregation in Africans and Asians. The findings have been compared with those already obtained in Europeans. The three ethnic groups had a similar socio-economic status.

Subjects, Materials, and Methods

The European group previously studied (Dubber et al, 1967) consisted of nine males and one female, aged 26 to 36 years. The two other groups consisted of 10 healthy male Africans, aged 22 to 29 years, and 10 healthy male Asians, aged 22 to 26 years. The Europeans were all members of the hospital staff of the Royal Infirmary, Glasgow, and the Africans and Asians were medical students living in the students' hostel at the Kenyatta National Hospital, Nairobi.

The diet of the African and Asian students was essentially that of the urbanized European, being high in protein and animal fat. Each subject was investigated on two occasions, once after a low-fat breakfast, the control situation, and again after the same breakfast to which had been added 270 g of double cream. The details of the breakfast are provided in Table I.

Before the breakfast each subject had fasted and refrained from smoking from the previous evening. After the breakfast a further three-hour fast was observed and venous blood samples were then taken. Before venepuncture each subject was rested. The order in which the breakfasts were taken was randomized.

After the subject had rested for 15 minutes, and
with minimal occlusion of the circulation, 50 ml
of venous blood was obtained in plastic syringes
after a clean venepuncture using a needle of
gauge no. 19. The blood was allocated as follows:
27 ml in 9-ml amounts was mixed in three chilled
siliconized centrifuge tubes, each containing 1 ml
of 3-8% sodium citrate for fibrinolytic, coagula-
tion, and platelet aggregation studies; 2-5 ml
was mixed in a sequestrene container (Stayne
Laboratories Limited, High Wycombe) for
platelet counts; the remainder was collected as
serum for lipid assays.
The citrated silicone specimens were kept in
ice and centrifuged 10 minutes after collection
(600 g for five minutes at 4°C) to obtain platelet-
rich plasma.

Methods Used to Assess the Fibrinolytic System

EUGLOBULIN CLOT LYSIS TIME
This was measured by the method of Nilsson and
Olow (1962). Since fibrinolytic activity is propor-
tional to the reciprocal of the lysis time (Sherry
and Alkjaersig, 1957), the results were expressed
as units of activity, the reciprocal of a lysis time
of 300 minutes being taken as 1 unit (Sherry,
Lindemeyer, Fletcher, and Alkjaersig, 1959). This
test was designed to measure plasma plasminogen
activator level.

UROKINASE SENSITIVITY TEST
This was performed according to the method of
McNicol, Gale, and Douglas (1963); 0-32 ml of
urokinase (500 Ploug units per ml) (Leo Labora-
tories, Copenhagen) was added to 0-2 ml of
plasma which was clotted with 0-1 ml thrombin
(20 NIH units per ml) and the lysis time measured.
The results are expressed in units, a unit being
defined as the reciprocal of a lysis time of 10
minutes. Urokinase sensitivity in a population is
a measure of variations in the levels of fibrinolytic
inhibitors.

PLASMINOGEN ASSAY
This was performed by a modification of the
caseinolytic method of Remmert and Cohen
(1949) as described by Alkjaersig, Fletcher, and
Sherry (1959).

FIBRINOLYSIS ASSAY
This was performed by a modification of the
method of Ratnoff and Menzies (1951) as de-
scribed by McNicol and Douglas (1964).

PLATELET AGGREGATION
This was measured by a Chandler’s tube tech-
nique, modified to use platelet-rich plasma rather
than whole blood. In the European study the
method was to add 5 ml platelet-rich plasma to
a Chandler’s tube (gauge N/17, Portland Plastics,
Kent) and make this up to 15 ml with 0-9% NaCl.
The platelet-rich plasma was recalcified with ten-

OURE J disposable

&

0-9% NaCl and recalcified with 1 ml 0-25 M
CaCl2.

PLATELET COUNT
This was performed by the method of Dacie
(1956).

STYPVEN (RUSSELL’S VIPER VENOM) TIME
This was measured by a modification of the
method of MacLagan, Billimoria, and Curtis
(1958). The plasma used was that collected in
siliconized tubes and centrifuged at 600 g for
five minutes at 4°C. It was further centrifuged at
2,000 g for 15 minutes at 4°C to render it platelet
poor. To 0-1 ml of this plasma in a glass test tube
at 37°C, were added simultaneously 0-1 ml
Stypven (Burroughs Wellcome & Co.) and 0-1 ml
0-025 M CaCl2, and the clotting time was
recorded.

BLOOD LIPID ASSAYS
Triglyceride levels were measured by the method
of Van Handel and Zilversmit (1957).

Results

EUGLOBULIN CLOT LYSIS TIME
The results are shown in Figure 1. In the Euro-

EUGLOBULIN CLOT LYSIS TIME
The results are shown in Figure 1. In the Euro-
peans the mean euglobulin lysis activity after the
high-fat (1-10 units) breakfast is significantly less
than the mean activity after a low-fat (1-72 units)
breakfast (t = 3.57, p < 0.01). This difference
was not seen in the Africans ($t = 0.52, P > 0.70$)
or in the Asians ($t = 0.42, P > 0.1$).

Urokinase Sensitivity Test
These results are shown in Figure 2. In the European group, a reduction in lytic activity was observed after the fat-supplemented breakfast ($t = 3.09, P < 0.02$). This was not the case in the Africans ($t = 0.26, P > 0.1$) or in the Asians ($t = 1.23, P > 0.1$).

Plasminogen and Fibrinogen Levels
These results are shown in Table II. In all three groups no significant difference was noted in the levels of plasminogen and fibrinogen after the fatty breakfast as compared with the control breakfast.

Platelet Aggregation in Chandler's Tube
The results are listed in Table III. In the Europeans the time for platelet aggregation was significantly prolonged by the fat-supplemented meal.

Table II: Plasminogen and fibrinogen levels after both types of breakfast in each group

<table>
<thead>
<tr>
<th></th>
<th>Breakfast</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Fat</td>
<td>High Fat</td>
</tr>
<tr>
<td>Plasminogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europeans 2 4±0.3</td>
<td>2 3±0.2</td>
<td>$t = 0.375, P < 0.8$</td>
</tr>
<tr>
<td>Asians 2 7±0.4</td>
<td>2.8±0.5</td>
<td>$t = 0.53, P < 0.7$</td>
</tr>
<tr>
<td>Africans 3.2±0.6</td>
<td>3 1±0.5</td>
<td>$t = 1.00, P < 0.4$</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europeans 253±97</td>
<td>253±94</td>
<td>$t = 0.098, P < 0.95$</td>
</tr>
<tr>
<td>Asians 298±64</td>
<td>306±73</td>
<td>$t = 0.39, P < 0.8$</td>
</tr>
<tr>
<td>Africans 286±65</td>
<td>305±80</td>
<td>$t = 0.85, P < 0.5$</td>
</tr>
</tbody>
</table>

Table III: Time for platelet aggregation (seconds) after both types of breakfast in each group

<table>
<thead>
<tr>
<th></th>
<th>Breakfast</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Fat</td>
<td>High Fat</td>
<td></td>
</tr>
<tr>
<td>Europeans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europeans 521±87</td>
<td>603±68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asians 681±132</td>
<td>843±299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africans 720±245</td>
<td>642±253</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1 Euglobulin clot lysis time expressed as units of activity (mean and standard deviation) after both types of breakfast in each group.

Fig. 2 Urokinase sensitivity expressed in units (mean and standard deviation) after both types of breakfast in each group.
Effect of feeding fat on fibrinolysis, Stypven time, and platelet aggregation in Africans, Asians, Europeans

(t = 4.26, p < 0.01). This effect was not observed in either the Asian (t = 2.11, p > 0.10) or African groups (t = 0.46, p > 0.1).

PLATELET COUNT
These results are shown in Table IV. No significant difference was noted in the platelet counts after the control breakfast as compared with the test breakfast in either of the three groups.

STYPVEN TIME
These results are shown in Figure 3. In all groups this was significantly reduced after the fatty breakfast as compared with the control. The fall was of similar proportion in all groups (p < 0.001 in each case).

BLOOD TRIGLYCERIDE LEVELS
The results are shown in Table V. Significant increases occurred in the levels of triglyceride (Europeans t = 4.43, p < 0.005; Africans t = 6.09, p < 0.001; Asians t = 5.64, p < 0.001) demonstrating adequate absorption of the ingested fat.

COMPARISON BETWEEN GROUPS
Apart from the observation made in each group with regard to the effect of the fatty meal, certain other comparisons were made. In Fig. 4 is shown the basal euglobulin clot lysis activity for each group, ie, after the control breakfast. The Europeans have the lowest level of activity, the Africans the highest, and the Asians occupy an intermediate position. The difference in mean

<table>
<thead>
<tr>
<th>Group</th>
<th>Breakfast</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Fat</td>
<td>High Fat</td>
</tr>
<tr>
<td>Europeans</td>
<td>219.7 ± 58.6</td>
<td>232.4 ± 50.2</td>
</tr>
<tr>
<td>Asians</td>
<td>184 ± 136</td>
<td>187 ± 26.2</td>
</tr>
<tr>
<td>Africans</td>
<td>188 ± 33.7</td>
<td>190 ± 24.9</td>
</tr>
</tbody>
</table>

Table IV Platelet counts (thousands/mm²) after both types of breakfast in each group

<table>
<thead>
<tr>
<th>Group</th>
<th>Breakfast</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Fat</td>
<td>High Fat</td>
</tr>
<tr>
<td>Europeans</td>
<td>81 ± 34</td>
<td>164 ± 82</td>
</tr>
<tr>
<td>Asians</td>
<td>140 ± 60</td>
<td>421 ± 183</td>
</tr>
<tr>
<td>Africans</td>
<td>84 ± 27</td>
<td>212 ± 73</td>
</tr>
</tbody>
</table>

Table V Serum triglyceride levels after both types of breakfast in each group
euglobulin clot lysis activity between Europeans and Africans ($t = 7.06, P < 0.001$) or Asians ($t = 2.52, P < 0.05$) is significant. The difference, however, between Africans and Asians ($t = 2.05, P > 0.10$) is not significant.

The same pattern can again be seen in Fig. 5 where the basal plasminogen levels are plotted. The differences between the Europeans and the Africans ($t = 3.71, P < 0.005$) or Asians ($t = 2.34, P < 0.05$) are significant. The difference between the Africans and the Asians, however, is not significant ($t = 2.02, P > 0.10$).

Discussion

The evidence presented demonstrated that a high fat meal which produced striking hyperlipidaemia in every subject influenced fibrinolytic activity in a different manner in Europeans as compared with Africans and Asians. The fat meal caused a significant depression of euglobulin clot lysis activity and increased resistance of plasma clots to lysis by urokinase in Europeans but was without such influence in Africans and Asians. In all three racial groups plasminogen and fibrinogen levels were unchanged after the fatty meal, suggesting that the changes in lytic activity in the Europeans could not therefore be attributed to change in these levels. The fat load appeared to influence platelet aggregation in the Europeans by prolonging the time taken to aggregation in the Chandler’s tube but this effect did not occur in either the Asians or the Africans.

The results show that in Europeans only, of the three ethnic groups studied, hyperlipidaemia both accelerates blood coagulation as measured by the Stypven time and inhibits fibrinolytic activity. If, as has been postulated, persistence of fibrin deposits on the endothelium is important in the genesis of atheroma, the shortening of the Stypven time by increasing the tendency to fibrin formation and the impairment of fibrinolytic activity by interfering with the removal of fibrin might tend to facilitate the development of atheroma. It is also of interest that the control level of the euglobulin clot lysis activity, ie, after a low fat breakfast was substantially different in each group, the Africans showing much greater lytic activity than Europeans or Asians and the Asians showing significantly greater activity than Europeans. A similar pattern was also seen in the levels of plasminogen after the control breakfast.

Wainwright (1961), comparing the incidence of atherosclerosis in Europeans, Africans, and Asians in Natal, found that the Europeans were most affected, the Africans least so, and that the Asians occupied an intermediate position. The pattern of differences in basal euglobulin clot lysis activity and basal plasminogen levels found in the present study in the different racial groups is compatible with the theory that fibrinolytic activity may have a role in the genesis of the varying incidence of atheroma in these groups. The failure of the high fat breakfast to depress fibrinolytic activity in Africans and Asians may have some bearing on the observed racial differences in the incidence of atheroma. Increased euglobulin clot lysis activity in Africans and Asians as compared with Europeans has also been shown by Menon (1967). However, he was unable to show any difference between Europeans and Asians resident in Britain and he did not report plasminogen levels.

The work presented here in which Europeans, Africans, and Asians from comparable socioeconomic groups were studied suggests that there may be genetic differences between Europeans, Africans, and Asians with respect to the levels of activity of their fibrinolytic enzyme system which may play a part in determining the differing incidences of atherosclerosis which have been observed in these three racial groups.

Our thanks are due to Dr B. M. Rifkind who performed the lipid assays. Professor S. Alstead and Professor A. S. Douglas played a major role in establishing laboratory facilities.

Financial assistance was provided by the Kenya Ministry of Health, East African Medical Research Council, Ministry of Overseas Development, Hoechst (East Africa) Limited, Pfizer Tropical Research Laboratory, Merck, Sharp and Dohme Laboratories, Pfizer Corporation, and I.C.I. Pharmaceutical Division. Reagents were provided by A.B. Kabi, Stockholm, Sweden.

References

Effect of feeding fat on fibrinolysis, Stypven time, and platelet aggregation in Africans, Asians, Europeans

Effect of feeding fat on fibrinolysis, Stypven time, and platelet aggregation in Africans, Asians, and Europeans

J. C. Ferguson, N. Mackay and G. P. McNicol

doi: 10.1136/jcp.23.7.580

Updated information and services can be found at:
http://jcp.bmj.com/content/23/7/580

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/