Pharmacological enhancement of fibrinolytic activity and 125I-fibrinogen survival

J. A. HICKMAN

From the Department of Surgical Studies, The Middlesex Hospital, London

SYNOPSIS Studies with 125I-fibrinogen after the administration of phenformin plus ethyloestrenol in five subjects showed no evidence of enhanced catabolism of fibrinogen despite a fall in plasma fibrinogen concentration and shortened clot lysis time. It seems probable that the fall in plasma fibrinogen concentration after the administration of these drugs is related to diminished hepatic synthesis of fibrinogen and is independent of the induction of plasminogen activator release.

It has been shown that the combined administration of phenformin and ethyloestrenol produces a sustained increase in the fibrinolytic activity of the blood both in healthy and diseased subjects. Moreover, the enhancement of fibrinolysis is associated with a fall in plasma fibrinogen concentration and the temporary appearance in the serum of fibrin degradation products (Fearnley, Chakrabarti, and Hocking, 1967; Fearnley, Chakrabarti, and Evans, 1969). The association of increased fibrinolytic activity and fall in plasma fibrinogen concentration raises the question whether the lysis of fibrinogen as well as of fibrin is promoted by these drugs.

To pursue this further survival studies with 125I-fibrinogen were performed in four patients and in a fifth healthy subject before and during treatment with phenformin and ethyloestrenol.

Methods

PLAN OF STUDY 125I-fibrinogen survival, plasma fibrinogen concentration, dilute blood clot lysis time, and fibrin degradation products were studied in both the pretreatment and treatment periods.

In the healthy subject phenformin (sustained release capsules) 50 mg twice daily plus ethyloestrenol 4 mg twice daily were given five days after the injection of $50 \mu \text{C} \, ^{125}\text{I-fibrinogen}$. By the fifth day a baseline half-life ($T/2$) $^{125}\text{I-fibrinogen}$ had been obtained as well as estimations of fibrinogen concentration, blood lysis time, and fibrin degradation products.

In four patients treated with the same dose of phenformin and ethyloestrenol, one month was allowed to elapse before the second period of study since it is known that maximal enhancement of fibrinolytic activity and fall in plasma fibrinogen concentration does not occur until several weeks after treatment is first instituted (Fearnley, Chakrabarti, and Evans, 1966).

125I-FIBRINOGEN SURVIVAL Each subject was given $50 \mu \text{C}$ of 125I-fibrinogen (Radiochemical Centre, Amersham, Bucks). The mean total clottability of this material in vivo was $92.4 \% \pm 1.3$. The disappearance rate of 125I-fibrinogen from the plasma was followed by studying the activity in the clottable fraction by the method of Regoeczi (1967). The counts were expressed as a percentage of the first sample obtained 10 minutes after injection of the fibrinogen and demonstrated graphically using a semilogarithmic scale. The half-life ($T/2$) was obtained from regression lines to fit the values obtained more than 40 hours after injection. In case 2 sufficient data were obtained to analyse the clottable intravascular radioactivity according to
the three-compartmental model described by Matthews (1957) and the fractional catabolic rate was calculated before and during treatment with the drugs.

PLASMA FIBRINOGEN CONCENTRATION

The gravimetric method of Fearnley and Chakrabarti (1966) was used, slightly modified in that the clot was extracted with a steel needle (Regoezzi, 1967).

DILUTE BLOOD CLOT LYSIS TIME

Fearnley's method (1964) was used. Samples were taken between 9 am and 10 am on two successive days in both the pretreatment and treatment periods, each estimation being set up in triplicate.

FIBRIN DEGRADATION PRODUCTS

The Wellcome kit was used (Wellcome Research Laboratories, Beckenham, Kent) with a microtitre set (Flow Laboratories). Results were read independently by two observers; each estimation was performed in duplicate. Difficulty was experienced in removing heterophile antibodies in some specimens despite repeated absorption with sheep red cells. This method is therefore probably unreliable for detecting low levels of fibrin degradation products.

Results

The findings are shown in Table I and in Figures 1 and 2.

Table I shows the half life of 125I-fibrinogen (T/2) before and after one month's treatment with phenformin and ethyloestrenol. Plasma fibrinogen concentration, dilute blood clot lysis times, and levels of serum fibrin degradation products are also shown.

Figure 1 shows the results from the study of the healthy male subject. 125I-fibrinogen survival is expressed as radioactivity in the clottable fraction as a percentage of the 10-minute sample. It will be noted that the administration of phenformin and ethyloestrenol did not cause any alteration in slope of the curve for 125I-fibrinogen survival, although by the end of the study the blood clot lysis time had been shortened significantly. The slight rise in plasma fibrinogen level after starting the drugs has previously been observed in subjects with normal levels of fibrinogen at the outset of treatment (Fearnley, personal communication).

Figure 2 shows the results from case 2. The 125I-fibrinogen survival is shown before and after one month's treatment. The T/2 has fallen from 116 hours to 100 hours but mathematical analysis of the curves reveals that the fractional catabolic rate is virtually unchanged at 21-2% per day compared with 19-5% per day. Furthermore, in view of the fall in the plasma fibrinogen pool in the second study, the absolute amount of fibrinogen catabolized per day has actually fallen from 3-27 g to 2-31 g per day, a fall of 29%.

Discussion

The values obtained for the half-life of 125I-fibrinogen in this study are similar to those obtained in healthy subjects by Takeda (1966), by Regoezzi and Stannard (1969), and in control subjects with miscellaneous disorders by Baker, Rubenberg, Dacie, and Brain (1968). This suggests that the 125I-fibrinogen preparation used here was adequate for metabolic purposes.

In this study fibrinogen catabolism was not significantly enhanced after the administration of phenformin and ethyloestrenol despite increased fibrinolytic activity in all the subjects and a fall in the plasma fibrinogen concentration in three of the four patients treated with the drugs for one month.

Similar findings of increased fibrinolysis without change in fibrinogen catabolism were obtained by Regoezzi and Walton (1967) in a study of eight monkeys whose fibrinolytic mechanisms were stimulated by injections of nicotinic acid or

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Diagnosis</th>
<th>T/2 125I-Fibrinogen (hr)</th>
<th>Fibrinogen Concentration (mg%, ± S.D.) Before</th>
<th>Blood Clot Lysis Time (hr)</th>
<th>Fibrin Degradation Products (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>54</td>
<td>Arteriosclerosis</td>
<td>104</td>
<td>618 ± 68</td>
<td>31 ± 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>58</td>
<td>Ischaemic heart disease</td>
<td>116</td>
<td>438 ± 52</td>
<td>31 ± 29</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>52</td>
<td>Cutaneous vasculitis</td>
<td>87</td>
<td>555 ± 33</td>
<td>441 ± 40</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>46</td>
<td>Erythema multiforme*</td>
<td>72</td>
<td>267 ± 58</td>
<td>337 ± 37</td>
<td>0</td>
</tr>
</tbody>
</table>

Table I: Summary of data from four patients before and after treatment with phenformin and ethyloestrenol

1^Mean of two daily observations.
2^This patient relapsed during the treatment period.
Pharmacological enhancement of fibrinolytic activity and 125I-fibrinogen survival

by the consumption of phenformin. However, no change in the plasma fibrinogen concentration was produced in these short-term experiments.

If the fall in plasma fibrinogen concentration after the administration of phenformin and ethyloestrenol is not a reflection of increased catabolism then it would seem likely that the hepatic synthesis of fibrinogen is decreased. Such a decrease is unlikely to be related to the fibrinolytic activity of these drugs, an effect that is thought to be due to the induction of plasminogen activator release. The independence of these two activities is borne out by the fact that no correlation has ever been observed between enhancement of fibrinolysis and fall in plasma fibrinogen concentration. This dissociation is illustrated in the study of the healthy subject reported here who showed significant shortening of the lysis time despite a rise in the plasma fibrinogen concentration.

Interest in phenformin and ethyloestrenol is chiefly centred on their effect upon the fibrinolytic mechanism. However, alterations in the plasma fibrinogen concentration will affect those tests of fibrinolysis which use the subject’s own fibrinogen as the stroma for the test. Thus Gallimore and Shaw (1969) have demonstrated that the addition of purified fibrinogen to dilute blood clots prolongs the lysis time in direct proportion to the amount of fibrinogen added. Therefore the shortening of the dilute blood clot or euglobulin lysis times after phenformin and ethyloestrenol is probably a reflection in part of the fall in plasma fibrinogen concentration rather than the total result of an increase in plasminogen activator release.

I wish to thank Dr E. Regoeczi for much valuable advice and for assistance in determining the fractional catabolic rates, and Dr T. J. Ryan, Dr G. R. Fearnley, Mr J. R. C. Gardham, and Professor L. P. Le Quesne for their help.

References

The November 1970 Issue

THE NOVEMBER 1970 ISSUE CONTAINS THE FOLLOWING PAPERS

Sensitivity of Hartmannella (Acanthamoeba) to 5-fluorocytosine, hydroxystilbamidine, and other substances

- **J. A. Hickman**

The erythrocyte glutathione reductase activity (E.C. 1.6.4.2) of healthy blood donors

- **M. L. Salkie and E. Simpson**

Microangiopathic haemolytic anaemia: The phenomenon of red cell adherence

- **F. E. Preston and R. Christenhusz**

The effect of exercise on the venous blood ammonium concentration in man

- **D. Sinniah, T. T. Fulton, and H. McCullough**

Venous blood ammonium levels in control subjects and in patients with disorders of the liver

- **D. Sinniah, T. T. Fulton, and H. McCullough**

Thin-layer acrylamide gel electrophoresis

- **Manis Nandi and George P. Lewis**

The temperature activity relationships of serum cholinesterases

- **J. King and H. G. Morgan**

Technical methods

- **Method for the detection and identification of alpha1 fetoprotein in serum**

- **J. Kohn**

An assessment of Sickledex as an alternative to the sickling test

- **D. Canning and R. G. Huntsman**

A report form for the serial display of laboratory results in small hospitals

- **C. P. Mayers**

A dehydration and celloidin impregnation cycle for central nervous system material using tissue-processing apparatus (Histokinette)

- **N. L. Russell and A. T. Sandison**

Letters to the Editor

Book reviews

Copies are still available and may be obtained from the PUBLISHING MANAGER, BRITISH MEDICAL ASSOCIATION, TAVISTOCK SQUARE, WC1H 9JR price 21s.
Pharmacological enhancement of fibrinolytic activity and 125I-fibrinogen survival

J. A. Hickman

J Clin Pathol 1970 23: 797-800
doi: 10.1136/jcp.23.9.797

Updated information and services can be found at:
http://jcp.bmj.com/content/23/9/797

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/