Letters to the Editor

Alternative Solutions for the Operation of the Coulter Model S

The cost of operating the Coulter model S as reported by Barnard, Carter, Crossland-Taylor, and Stewart (1969) is approximately 5 (2±p) cents (Australian) per test for reagents purchased from the manufacturer. In countries where importation of these solutions is necessary the operating cost is approximately 9 cents (4±p) per test. This compares unfavourably with the cost of operating systems such as the semi-automated system described by Davis and Kelly (1969).

The Coulter model S requires two solutions for operation: a buffered sodium chloride solution and a lysing and haemoglobin conversion solution. The formulae for these solutions have not been published to date. The high cost of the commercial products has prompted formulation of alternative solutions. Excellent results have been obtained with the substitute buffered salt solution made up as follows:

- Sodium chloride 8·3 g
- Disodium hydrogen phosphate 2·0 g
- Potassium dihydrogen phosphate 0·45 g
- Potassium chloride 0·16 g
- Sodium azide 1·0 g
- Glucose 0·25 g
- Water to 1 litre

To facilitate preparation of large volumes of this solution, a dry mix is prepared. Solutions are made up in 25 litre plastic containers and are membrane filtered (millipore filter, pore size 0·45µ). Using the substitute buffered salt solution no variation in results was obtained when compared with the commercial product.

To be compatible with the Coulter S system, the lysing/haemoglobin conversion solution should have the following properties: it should convert haemoglobin to cyanmethaemoglobin within 25 seconds and it should selectively and rapidly lyse the erythrocytes and leave the leucocytes in stable suspension. The formula of a solution fulfilling these requirements is made up as follows:

Sodium chloride 8·3 g
Disodium hydrogen phosphate 2·0 g
Potassium dihydrogen phosphate 0·45 g
Potassium chloride 0·16 g
Potassium cyanide 0·5 g
Coco-alkyltrimethylammonium chloride (Argaud C-50%, Armour Hess Chemicals) 0·150 ml
Water to 1 litre

The solution is prepared in bulk and membrane filtered. Because of the powerful lytic action of this reagent, it is necessary to retain a filter unit solely for this purpose. Relative instability of potassium cyanide in dilute solution gives the preparation a limited shelf life and it is best prepared fresh every three months.

Blood diluted in the substitute lysing reagent gives an absorption curve similar to that obtained with Drabkin's solution. Conversion is virtually complete within the time limit set by the machine.

Although the leucocytes undergo considerable shrinkage in the substitute lysing solution, the total cell count does not vary appreciably over a period of at least thirty minutes.

Using the substitute solution the cost per test has been reduced from approximately 9 cents (4±p) to 0·5 cents (4±p) per test.

D. J. NICOL AND R. E. DAVIS
From the Department of Haematology, Royal Perth Hospital, Perth, Western Australia

References

Sites of Maximal Intestinal Absorptive Capacity for Amino Acids and Peptides: Evidence for an Independent Peptide Uptake System or Systems

In this letter we wish to make a brief report of an investigation of the sites of maximal absorptive capacity for amino acids and peptides, since the results throw additional light on the problem of intestinal peptide uptake and its role in protein absorption (Matthews, 1971).

Absorption of L-methionine (200 m mol/l) and the equivalent L-methionyl-L- methionine (100 m mol/l) was measured by disappearance from the lumen of tied loops of small intestine in anaesthetized rats over a period of 15 min (Matthews, L. and Crampton, 1969). Six loops were made in each animal at regular intervals down the small intestine from a site close to the pylorus (loop 1) to one close to the ileocaecal valve (loop 6).

The results in the Table show that the sites of maximal absorptive capacity for the amino acid and the peptide are completely different. That for the amino acid is in the distal small intestine, whereas that for the peptide is in the proximal small intestine. In the jejunum (loop 2) absorption from the peptide is three times as great as from the equivalent amino acid, whereas in the distal ileum both peptide and amino acid are absorbed to approximately the same extent. A similar pattern has been found using a tryptic hydrolysate of casein (consisting mainly of small peptides) and a mixture of amino acids of equivalent amino acid content (Crampton, L., and Matthews, 1971).

<table>
<thead>
<tr>
<th>Loop No.</th>
<th>Absorption of L-methionine (200 m mol/l) (µ mol/mg/min)</th>
<th>Absorption of L-methionyl-L-methionine (100 m mol/l) (µ mol/mg/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1·36 ± 0·40†</td>
<td>2·98 ± 0·18</td>
</tr>
<tr>
<td>2</td>
<td>1·47 ± 0·11</td>
<td>4·37 ± 0·28</td>
</tr>
<tr>
<td>3</td>
<td>1·71 ± 0·25</td>
<td>4·32 ± 0·41</td>
</tr>
<tr>
<td>4</td>
<td>2·01 ± 0·19</td>
<td>3·85 ± 0·33</td>
</tr>
<tr>
<td>5</td>
<td>2·41 ± 0·30</td>
<td>3·52 ± 0·43</td>
</tr>
<tr>
<td>6</td>
<td>1·86 ± 0·10</td>
<td>2·19 ± 0·09</td>
</tr>
</tbody>
</table>

†Mean ± SE n = 6

Table Absorption of L-methionine and L-methionyl-L-methionine from different sites in the small intestine of the rat

The difference in the sites of maximal absorptive capacity for peptides and amino acids provides additional support for the hypothesis, suggested by observations in Hartnup disease (Asatoor, Cheng, Edwards, Lant, Matthews, Milne, Navab, and Richards, 1970), that peptides and amino acids are absorbed by independent mechanisms. Furthermore, if mucosal uptake of peptides (rather than amino acids) plays the major part in protein absorption, as seems possible, the results may help to explain the previously puzzling observation that whereas protein is largely in the proximal small intestine,
Letters to the Editor

the site of maximal transport capacity for free amino acids in more than one species is distal (Matthews and Laster, 1965).

This work was supported by grants from the British Nutrition Foundation, the Medical Research Council, and the Variety Club of Great Britain.

D. M. MATTHEWS
R. F. CRAMPTON
M. T. LIS
Department of Experimental Chemical Pathology,
Westminster Medical School,
London, SW1
British Industrial Biological Research Association
Carshalton, Surrey

References


Group B Streptococcus Meningitis in an Elderly Woman

We were interested to read Dr I. A. Harper’s account (July 1971) of group B streptococci as pathogens in the British Isles. The experience of this hospital group supports his view that the sparse literature does not reflect the incidence of infection, for group B streptococci are frequently isolated from clinical specimens and on occasion have a pathogenic role in chronic urinary tract infections, necrotic lesions, postpartum infections, and neonatal sepsis.

We recently observed a case of meningitis in an 80-year-old woman who was admitted to Bristol General Hospital having been found drowsy at home. After initial improvement she became pyrexial (38-2°C) and developed severe neck stiffness, a left facial palsy, and increased tendon reflexes on the left side. The ear drums and throat were normal and there was no sign of infection elsewhere.

The cerebrospinal fluid was white and opaque without xanthochromia. There were 600 leucocytes per cmm (73% neutrophils and 27% lymphocytes) and no red cells. The protein was 180 mg % and the glucose 80 mg %. A Gram-stained film showed many lanceolate Gram-positive cocci, mainly in pairs, and overnight culture yielded a heavy growth of beta haemolytic streptococci of Lancefield’s group B.

After three weeks’ treatment with benzyl penicillin the patient made a good recovery.

It has been observed that after the neonatal period group B streptococcal septicaemia usually occurs in the elderly (Butter and de Moor, 1967) but meningitis in adults has only rarely been reported. The eight cases we have been able to find in the literature are listed in the Table.

Table Cases of streptococcal meningitis in the literature

<table>
<thead>
<tr>
<th>Author</th>
<th>Date</th>
<th>Sex</th>
<th>Age</th>
<th>Underlying Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rantz</td>
<td>1942</td>
<td>F</td>
<td>48</td>
<td>Laminectomy; removal of meningioma</td>
</tr>
<tr>
<td>Wheeler and Foley</td>
<td>1943</td>
<td>?</td>
<td>'Adult'</td>
<td>'Postoperative'</td>
</tr>
<tr>
<td>Lazarus et al</td>
<td>1965</td>
<td>F</td>
<td>56</td>
<td>Diabetes; infected lesion; chronic pyelonephritis</td>
</tr>
<tr>
<td>Butter and de Moor</td>
<td>1967</td>
<td>M</td>
<td>34</td>
<td>Otitis media</td>
</tr>
<tr>
<td>Butter and de Moor</td>
<td>1967</td>
<td>?</td>
<td>Elderly</td>
<td>(two patients)?</td>
</tr>
<tr>
<td>Toft and Jespersen</td>
<td>1968</td>
<td>F</td>
<td>24</td>
<td>Pregnancy</td>
</tr>
<tr>
<td>Toft and Jespersen</td>
<td>1968</td>
<td>F</td>
<td>32</td>
<td>Diabetes; gangrenous lesion</td>
</tr>
</tbody>
</table>

The two elderly patients in the series of Butter and de Moor were among 20 elderly patients with bacteraemia and most of these had underlying conditions similar to those listed for other patients in the Table. Our patient is unusual in that no such condition was demonstrated and no primary focus of infection with group B streptococci was found.

The Gram film appearances suggested pneumococcal meningitis, but fortunately the treatment for the two conditions is the same, since it appears that strains of group B streptococci from human sources are always sensitive to benzyl penicillin (Eickhoff, Klein, Daly, Ingall, and Finland, 1964).

R. S. E. WILSON
G. J. DAVIES
C. J. BURNS-COX
D. C. E. SPELLER
United Bristol Hospitals

References

Sites of maximal intestinal absorptive capacity for amino acids and peptides: evidence for an independent peptide uptake system or systems.

D M Matthews, R F Crampton and M T Lis

doi: 10.1136/jcp.24.9.882-b

Updated information and services can be found at:
http://jcp.bmj.com/content/24/9/882.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/