The relationship between fluorescent, agglutinating, and precipitating antibodies to *Candida albicans* and their immunoglobulin classes

T. LEHNER, HELEN R. BUCKLEY, AND I. G. MURRAY

From the Department of Oral Immunology and Microbiology, Guy’s Hospital Medical and Dental Schools, London, and the Mycological Reference Laboratory, London School of Hygiene and Tropical Medicine

SYNOPSIS A parallel study of fluorescent, agglutinating, and precipitating antibodies to *Candida albicans* revealed that precipitating antibodies belong to the IgG class, whereas agglutinating antibodies reside in the IgG, IgM, and IgA classes. The three types as well as the three classes of antibodies were found in Candida endocarditis and mucocutaneous candidiasis. Immuno-absorption studies suggest that the three serological tests estimate antibodies to mannan determinants of *Candida albicans*.

A variety of tests for antibodies to Candida have been used in different laboratories and the most common of these are agglutinating tests (Winner, 1955; Murray, Buckley, and Turner, 1969), precipitating tests (Murray et al., 1969; Stallybrass, 1964; Taschdjian, Kozinn, and Caroline, 1964; Chew and Theus, 1967; Pepys, Faux, Longbottom, McCarthy, and Hargreave, 1968), and immunofluorescent tests (Lehner, 1966, 1970; Esterly, 1968). The relationship between these antibodies and their immunoglobulin classes has not been defined, although this is of considerable interest in view of the diverse diagnostic claims made for some of these antibodies. Winner (1955) found that up to 64% of the apparently uninfected population had agglutinating antibodies to Candida and this led him to question their diagnostic value. Precipitating antibodies, however, have been found predominantly in systemic candidiasis (Stallybrass, 1964; Taschdjian et al., 1964), though others (Chew and Theus, 1967; Pepys et al., 1968) have found them in healthy subjects or in the absence of systemic candidiasis (Murray et al., 1969).

A quantitative relationship between the level of serum antibodies in patients with candidiasis, as compared with carefully selected controls, was established for agglutinins (Comaish, Gibson, and Green, 1963) and for fluorescent antibodies (Lehner, 1966 and 1970). These results suggested that the diagnosis of candidiasis was dependent on the sensitivity and possibly immunoglobulin class of antibodies and that significant titres could be found to differentiate infection from controls. Indeed, the aims of this investigation were to compare three methods of antibody estimation with special reference to the immunoglobulin class of antibody.

Patients and Methods

SERA

The series of 31 samples of blood were divided into three groups.

Group I

Sera from 10 patients with chronic mucocutaneous candidiasis.

Group II

Seven sequential sera from three patients who had cardiac surgery and developed Candida endocarditis.

Group III

Fourteen sequential sera from four patients who had cardiac surgery without developing endocarditis.

FLUORESCENT ANTIBODY TEST

The indirect technique was used to determine the titre of the specific immunoglobulin class of Candida antibodies by using monospecific IgG, IgA, and IgM conjugates as described previously (Lehner, 1966, 1970). Sheep antirabbit serum conjugate (Wellcome reagents) was used to estimate the fluorescent antibody to Candida in the antisera raised in rabbits. The smears were made by using yeast cells of *Candida albicans* group A, suspended...
in 0.4% formaldehyde saline. Doubling dilutions of sera from 1 in 2 were made in buffered saline to determine the antibody titre.

AGGLUTINATION TEST
This was carried out with whole yeast cells of another strain of *Candida albicans* group A as described previously (Murray et al, 1969). The agglutination titre was determined by using serially diluted sera.

PRECIPITATION TEST
The organisms were disrupted by a hydraulic press, centrifuged at 40,000 g, and the supernatant was used in a gel diffusion precipitation test (Murray et al, 1969). The results were expressed as positive or negative precipitation reactions. In order to be certain that the strain of *Candida albicans* group A used in the fluorescent antibody test did not differ from that applied to the agglutination and precipitation reactions, a number of sera were tested in parallel by the fluorescent antibody test with smears prepared from both strains of Candida. Precipitating antibodies to mannan and protein components of the yeast cells were tested by double diffusion tests as described previously (Buckley, Lapa, and Hipp, 1970).

DEAE CELLULOSE CHROMATOGRAPHY
A pooled serum from four patients with oral candidiasis was fractionated by the method described previously (Levy and Sober, 1960; Lehner, 1969). The resulting three fractions were examined for IgG, IgA, and IgM by immunoelectrophoresis and each fraction was tested for Candida antibodies.

RABBIT ANTIBODY TO CANDIDA ALBICANS
Serum IA was raised by two subcutaneous injections of 260 y of soluble antigen in incomplete Freund's adjuvant at monthly intervals, and the rabbits were bled after three weeks. Serum RAS was raised by intravenous injections of 2% formalized cells, three times a week for four weeks, and the rabbits were bled one week after the last injection.

IMMUNOABSORPTION
Antisera IA, RAS, and a serum from a patient with systemic candidiasis, containing antibodies to *Candida albicans*, were absorbed. One ml of serum was mixed with 0.4 ml of a Candida suspension,

Fig. 1 Comparison of fluorescent and precipitating antibody tests.

Fig. 2 The relationship between agglutination and fluorescent antibody titres.
with a PCV of 70%; this was kept at 37°C for three hours and then at 4°C overnight. The absorbed serum was centrifuged and then reabsorbed. The absorbed and unabsorbed sera were tested by the three methods for Candida antibodies.

Results

RELATIONSHIP BETWEEN THE IMMUNOGLOBULIN CLASSES OF CANDIDA ANTIBODIES

The immunoglobulin class of fluorescent antibodies is compared with precipitating and agglutinating antibodies in Figures 1 and 2. The highest titres were found with the agglutination test up to 1 in 512, followed by fluorescent antibodies, up to 1 in 256 for IgG, and 1 in 128 for IgA and IgM. A very significant relationship was established by means of the Chi square test (with Yate's correction) between precipitating and IgG fluorescent antibodies ($p < 0.001$), but not with IgM or IgA. However, agglutinating titres were significantly correlated with all three immunoglobulin classes of fluorescent antibody titres: IgM ($r = 0.615, p < 0.001$), IgG ($r = 0.534, p < 0.01$), IgA ($r = 0.461, p < 0.01$). The fluorescent antibody titre against the two strains of Candida albicans was almost identical.

The immunoglobulin class of antibodies was determined directly by using the chromatography fractions (Fig. 3). IgG was found in the first fraction, IgM in the third fraction, and IgA (with some IgG) in the second fraction. The corresponding class of fluorescent antibodies was found in each of these fractions but precipitins were detected only in the IgG fraction. Agglutinins were present mostly in the IgM fraction (titre of 1:64), to a less extent in IgG (1:16), and a low titre of (1:4) was also detected in the IgA fraction.

ANTIBODIES IN SYSTEMIC AND MUCOCUTANEOUS CANDIDIASIS AND IN RABBIT ANTISERA

A rise in antibody titre and the appearance of precipitins was found in patients with endocarditis (Table I). This was also present in two of the four patients who did not develop endocarditis, although the fluorescent antibody titre rose only to low levels. The group of patients with chronic mucocutaneous candidiasis revealed significant agglutinating and fluorescent antibodies, and precipitating antibodies were found in six out of 10 patients (Table II). Both rabbit antisera showed agglutinating and fluorescent antibodies (Table III) but serum IA revealed precipitating antibodies to mannans and protein
Table I
Comparison of fluorescent, precipitating, and agglutinating antibodies to Candida albicans in patients having cardiac surgery

<table>
<thead>
<tr>
<th>Serum</th>
<th>Precipitating Antibody</th>
<th>Agglutinating Antibody</th>
<th>Fluorescent Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IgG</td>
<td>IgA</td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>32</td>
<td>256</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Table II
Comparison of fluorescent, precipitating, and agglutinating antibodies in patients with chronic mucocutaneous candidiasis

<table>
<thead>
<tr>
<th>Serum</th>
<th>Precipitating Antibody</th>
<th>Agglutinating Antibody</th>
<th>Fluorescent Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IgG</td>
<td>IgA</td>
</tr>
<tr>
<td>1</td>
<td>Human 562</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Human 562 absorbed</td>
<td><16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rabbit IA</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rabbit IA absorbed</td>
<td><16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Rabbit RAS</td>
<td>>1000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rabbit RAS absorbed</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Table III
Comparison of four types of antibody in two rabbit and one human antisera to Candida albicans before and after absorption

<table>
<thead>
<tr>
<th>Serum</th>
<th>Precipitating Antibody</th>
<th>Agglutinating Antibody</th>
<th>Fluorescent Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Human 562</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>Human 562 absorbed</td>
<td><16</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Rabbit IA</td>
<td>>100</td>
<td>ν globulin</td>
</tr>
<tr>
<td>4</td>
<td>Rabbit IA absorbed</td>
<td><16</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Rabbit RAS</td>
<td>>1000</td>
<td>256</td>
</tr>
<tr>
<td>6</td>
<td>Rabbit RAS absorbed</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

Discussion

Direct testing of the immunoglobulin fractions of human serum has revealed that precipitins to Candida belong to the IgG class and that they are very significantly related to the IgG class of fluorescent antibodies (r < 0.001). This is consistent with the view that IgG antibodies are very effective precipitins (Pike, 1967). Agglutinins, however, were found in highest titre in the IgM fraction (1:64) of fluorescent antibodies (r = 0.615, p < 0.001). Agglutinating antibodies were also detected in the IgG (1:16) and IgA (1:4) fractions, and were significantly related to the IgG (r = 0.534, p < 0.01) and IgA (r = 0.461, p < 0.01) fluorescent antibodies. Although the IgA chromatography fraction contained a small amount of IgG, there was no detectable IgG in the IgA fluorescent conjugate, so that agglutinating antibodies to Candida may belong to the IgA in addition to the IgM and IgG classes. Thus, the agglutination test for Candida estimates the three major classes of antibodies and the high agglutination titre may represent a summation of the IgM, IgG, and IgA titres. Indeed, the agglutination titre showed the best correlation with the three summed fluorescent antibody titres (r = 0.695, p < 0.001). These results are consistent with the findings of others that for agglutination smaller amounts of IgM than IgG are required and that agglutinating activity is shown by the IgA class of antibodies (Pike, 1967).

A differential diagnosis could not be made between systemic and mucocutaneous candidiasis by any one of the three immunological tests. Precipitins were components, whereas serum RAS had only antibodies to mannan.

Immunoadsorption

After absorption of the three antisera the precipitating and fluorescent antibodies were undetectable except for a titre of 1 in 8 (no. 6; Table III) and the agglutinating antibodies were depressed to < 1 in 16. These findings were particularly significant as antibodies to mannan components were absent, though antibodies were present to protein components in the absorbed sera (nos. 2 and 4; Table III). Anti-serum RAS (no. 5; Table III) showed antibodies only to mannan components and the highest agglutinating and fluorescent antibody titres. It appears from these results that mannan and not protein antibodies are responsible for the agglutination and fluorescent reactions.
found in six out of 10 patients with chronic mucocutaneous candidiasis and this differed from other results (Stallybrass, 1964; Taschdjian et al, 1964). It is now very likely that the specificity ascribed to precipitins can be accounted by their belonging to the IgG class, unlike agglutinins that are found in the IgM, IgG, and IgA classes.

In the three patients with Candida endocarditis precipitins and raised agglutinating and fluorescent antibody titres were found. This was particularly evident in the patient in whom serum antibodies could be estimated before and after endocarditis developed (no. 1; Table I). An unusual feature in this patient was that the IgM class of fluorescent antibodies rose only from 0 to 8, though IgA antibodies rose from 2 to 128. The appearance of precipitins and a rise of agglutinating titre from 0 to 128 and to 512 in two out of four patients who have undergone cardiac surgery without developing endocarditis could not be interpreted satisfactorily. It is of some interest that the fluorescent antibody test has not shown a corresponding rise in titre in these patients and reached only IgG levels of 1:16 and 1:32, and IgM of 1:16. This suggests that the immunofluorescent test is more reliable than the precipitating and agglutinating tests and that a rise in IgG fluorescent antibody titres to ≥ 1:64 should be considered as evidence in favour of the diagnosis of systemic candidiasis.

The results of the absorption studies suggest that the present serological tests estimate antibodies to mannann determinants. Thus, high titres of agglutinating and fluorescent antibodies were found in the presence of precipitating antibodies to mannann determinants and absence of protein determinants (Table III). Absorption of antibodies to mannann determinants from antisera in which antibodies to protein determinant were left unabsorbed was associated with a loss of or a significant fall in agglutinating and fluorescent antibodies. Mannann antibodies were also recorded in precipitation tests by others (Chew and Theus, 1967; Pepys et al, 1968). As mannans are probably cell wall components of Candida (Kessler and Nickerson, 1959; Kemp and Solotorovsky, 1964), and may reside on the surface of yeast cells (Hasenclever and Mitchell, 1964), they would be directly accessible to whole cell agglutination and to antibody binding in the immunofluorescent test.

We wish to thank Mr R. G. Ward for his technical assistance and the Medical Illustration and Photography Departments of Guy's Hospital Medical School for the illustrations.

References
The relationship between fluorescent, agglutinating, and precipitating antibodies to *Candida albicans* and their immunoglobulin classes

T. Lehner, Helen R. Buckley and I. G. Murray

doi: 10.1136/jcp.25.4.344

Updated information and services can be found at:
http://jcp.bmj.com/content/25/4/344

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/