An automated method for the microbiological assay of serum pyridoxal

R. E. DAVIS, B. K. SMITH, AND D. H. CURNOW

From the Department of Haematology, Royal Perth Hospital, Western Australia, and the Department of Pathology, University of Western Australia

SYNOPSIS A fully automated method for the measurement of serum pyridoxal has been developed. Acid phosphatase was used for dephosphorylation and precipitation of the serum proteins was not required. A chloramphenicol-resistant strain of *L. casei* was used as the test organism and this removed the need for sterilization. The method gives highly reproducible results, and is suitable for population and institutional studies.

The principal form of vitamin B6 found in serum is pyridoxal phosphate. This can be measured by enzymatic methods (Wada, Morisue, Nishimura, Morino, Sakamoto, and Ichihara, 1959; Walsh, 1966; Hines and Love, 1969) or after dephosphorylation by microbiological techniques such as those described by Baker, Frank, Ning, Gellene, Hutner, and Leevy, 1966; and Anderson, Peart, and Fulford-Jones, 1970. Few of these techniques have proved entirely satisfactory and they are not suitable for the measurement of large numbers of samples.

In this paper we describe a fully automated procedure using an acid phosphatase for dephosphorylation of the pyridoxal phosphate. Pyridoxal was measured microbiologically using a chloramphenicol-resistant strain of *Lactobacillus casei*. Chloramphenicol was added to the assay medium and this removed the need for sterilization and permitted the use of automated equipment.

Materials and Methods

TEST ORGANISM

The assay organism used was a chloramphenicol-resistant strain of *L. casei* (NCIB8010, ATCC7469). Chloramphenicol resistance was developed by the method described by Davis, Nicol, and Kelly, 1970. It was maintained by drying onto small ceramic beads (Annear, 1962).

A fully automated method for the measurement of serum pyridoxal has been developed. Acid phosphatase was used for dephosphorylation and precipitation of the serum proteins was not required. A chloramphenicol-resistant strain of *L. casei* was used as the test organism and this removed the need for sterilization. The method gives highly reproducible results, and is suitable for population and institutional studies.

The principal form of vitamin B6 found in serum is pyridoxal phosphate. This can be measured by enzymatic methods (Wada, Morisue, Nishimura, Morino, Sakamoto, and Ichihara, 1959; Walsh, 1966; Hines and Love, 1969) or after dephosphorylation by microbiological techniques such as those described by Baker, Frank, Ning, Gellene, Hutner, and Leevy, 1966; and Anderson, Peart, and Fulford-Jones, 1970. Few of these techniques have proved entirely satisfactory and they are not suitable for the measurement of large numbers of samples.

In this paper we describe a fully automated procedure using an acid phosphatase for dephosphorylation of the pyridoxal phosphate. Pyridoxal was measured microbiologically using a chloramphenicol-resistant strain of *Lactobacillus casei*. Chloramphenicol was added to the assay medium and this removed the need for sterilization and permitted the use of automated equipment.

Materials and Methods

TEST ORGANISM

The assay organism used was a chloramphenicol-resistant strain of *L. casei* (NCIB8010, ATCC7469). Chloramphenicol resistance was developed by the method described by Davis, Nicol, and Kelly, 1970. It was maintained by drying onto small ceramic beads (Annear, 1962).

1Please address requests for reprints directly to the author in the usual way. If a photocopy of the full paper is required, please send your request to the Publishing Manager, Journal of Clinical Pathology, BMA House, Tavistock Square, London WC1H 9JR, enclosing 25p. These reprint orders must be accompanied by this prepayment.

Received for publication 31 July 1973.

J. clin. Path., 1973, 26, 871-874

ASSAY MEDIUM

Double strength assay medium was prepared according to the protocol shown in table I. A magnetic stirrer was used to assist solution of the solids rather than heat, since it was found that the test organism grew better in a medium which had not been subjected to heat.

Some batches of casein hydrolysate were found to contain small quantities of pyridoxal; this may be destroyed by exposure of the casein to ultraviolet light before it is added to the medium.

The concentration of manganese sulphate is

Casein hydrolysate (enzymatic NBC)	200 ml
Glucose	40 g
Sodium acetate (anhydrous)	40 g
L-alanine	5 g
L-asparagine	0.6 g
L-cysteine HCl	0.4 g
L-tryptophan	0.1 g
KH₂PO₄	1.0 g
KCl	1.0 g
Glutathione (reduced)	5.0 mg
Adenine	10 mg
Guanine HCl	10 mg
Xanthine	20 mg
Uracil	10 mg
Calcium pantothenate	0.8 mg
Nicotinic acid	0.8 mg
Thiamine HCl	0.4 mg
Pteroylglutamic acid	0.02 mg
Riboflavin	1 mg
Biotin (10 µg/ml)	0.02 mg
Tween 80 (1:10 dilution)	1 ml
NaCl	20 mg
MgSO₄	0.4 g
MnSO₄.H₂O	7.5 mg
Distilled water to	1 litre
The pH was adjusted to 6.8	

Table I Assay media double strength

1Dissolved by suspending in a small volume of water and then adding concentrated KOH drop by drop until solution was complete.
critical; levels above that recommended results in precipitation of the acid phosphatase.

MAINTENANCE MEDIUM
This comprised single strength assay medium supplemented with 0.8 μg of pyridoxal and 30 mg of chloramphenicol base per litre.

PREPARATION OF INOCULUM
On the day before the test, a tube containing 10 ml of maintenance medium was inoculated with one ceramic bead containing the dried organisms. After overnight incubation the optical density of the culture was adjusted to 0.68-0.70.

PREPARATION OF STANDARDS
Pyridoxal HCl was used for the preparation of standards as follows.

Stock solution A
Pyridoxal HCl (equivalent to 0.5 g pyridoxal), 0.609 g, was made up to 1 litre with 0.02 N HCl giving a concentration of 500 mg/l.

Stock solution B
Of solution A 1.0 ml was diluted to 200 ml with 0.02 N HCl giving a pyridoxal concentration of 2.5 mg/l. This solution was stable for one month when kept in the dark.

Working solution
On the day of the test 4 ml of solution B was diluted to 500 ml with distilled water to give a concentration of 20 μg/l. This working solution was used to prepare the final standard solutions shown in the protocol (table II) and these were sampled in the same manner as the serum to be assayed.

Table II Preparation of pyridoxal standards

<table>
<thead>
<tr>
<th>Stock Solution (20 μg/l)</th>
<th>Distilled Water</th>
<th>Final (μg/l)</th>
<th>Concentration (nmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>4.5</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>1.0</td>
<td>4.0</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>8</td>
<td>48</td>
</tr>
<tr>
<td>3.0</td>
<td>2.0</td>
<td>12</td>
<td>72</td>
</tr>
<tr>
<td>4.0</td>
<td>1.0</td>
<td>16</td>
<td>96</td>
</tr>
<tr>
<td>5.0</td>
<td>0.1</td>
<td>20</td>
<td>120</td>
</tr>
</tbody>
</table>

METHOD
A Joyce Loeb Mecolab M automated system was used for setting up and reading the results of the assays.

Serum samples contained in small cups were placed on the inner circular rack and disposable plastic tubes were loaded into the outer rack. Each rack holds 40 tubes.

A diluter on the universal sampler unit was adjusted to sample 0.025 ml of serum, and to dilute this with 2.5 ml of acid phosphatase solution (50 mg Sigma type II acid phosphatase was added to 1 litre of citrate buffer pH 4.6, 230 ml 0.1M citric acid plus 270 ml 0.1M trisodium citrate made up to 1 litre with distilled water). Standards were processed in the same manner except that citrate buffer was used without enzyme. To each standard tube was added 0.025 ml of serum which had been freed of pyridoxal by ultraviolet irradiation. Standards were set up in triplicate with two extra blanks and two extra top standards.

To each litre of double strength assay medium was added 40 mg of chloramphenicol base and 0.8 ml of the overnight culture of the test organism. The flask of medium was placed on a magnetic stirrer on top of the sampler unit. The instrument was set in operation, but this time 2.5 ml of the inoculated medium was delivered into each of the tubes making a final volume of 5.0 ml and giving a serum dilution of 1 in 200. The medium should be added as soon as the enzyme sampling cycle has been completed; this gives a constant enzyme contact time of 13.3 minutes. At least one pyridoxal-free serum is set up with each batch plus others with known pyridoxal levels.

When the medium had been added to all the tubes in a rack it was removed and placed in a 37°C incubator for approximately 24 hours or until the top standard reached an optical density of 0.33. The racks were then returned to the Mecolab, the contents of each tube were mixed and the growth was measured in the autocolorimeter using a 621 μm filter and a 1.0 OD grey screen. Results were recorded in digital form on paper tape.

Calculation of Results
Readings obtained from the standards can be used to plot a standard curve on linear graph paper and the concentration of the unknown determined by interpolation. Alternatively a programmable electronic calculator such as the Diehl Combition S may be used.

Results
RECOVERY OF PYRIDOXAL
Pyridoxal HCl was added to serum containing 240 nmol/l to bring the concentration to 54 and 84 nmol/l respectively. The samples were then assayed and results of 56.4 nmol/l and 82.8 nmol/l equal to recoveries of 108 and 98% were obtained. A similar experiment using Anderson's method (Anderson et al, 1970) gave recoveries of 104 and 92%.
An automated method for the microbiological assay of serum pyridoxal

<table>
<thead>
<tr>
<th>Age</th>
<th>10-19</th>
<th>20-29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>60+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>64.5</td>
<td>59.6</td>
<td>55.1</td>
<td>43.9</td>
<td>41.9</td>
<td>35.6</td>
</tr>
<tr>
<td>Range</td>
<td>30.0-96.0</td>
<td>26.4-96.0</td>
<td>25.2-83.2</td>
<td>25.2-66.0</td>
<td>23.4-58.8</td>
<td>19.8-49.8</td>
</tr>
<tr>
<td>Female</td>
<td>54.3</td>
<td>51.2</td>
<td>40.3</td>
<td>39.0</td>
<td>35.1</td>
<td>34.3</td>
</tr>
<tr>
<td>Range</td>
<td>28.2-96.0</td>
<td>25.2-90.0</td>
<td>24.0-60.0</td>
<td>21.6-54.0</td>
<td>21.6-51.6</td>
<td>18.0-48.0</td>
</tr>
</tbody>
</table>

Table III Range and significance of serum pyridoxal levels (nmol/l) related to age and sex

REPRODUCIBILITY AND EFFECT OF STORAGE
A sample of serum assayed 14 times over a period of five months gave results ranging from 66.0 to 78.6 nmol/l (mean 68.7, SD 4.9). A sample of serum was assayed 20 times in the same batch and results ranged from 39.0 to 49.2 nmol/l (mean 45.2, SD 3.2).

COMPARISON WITH ANDERSON’S METHOD
Twenty samples were assayed in triplicate by both methods. The results obtained with the present method were on an average 30% higher than those obtained with Anderson’s method.

SERUM PYRIDOXAL CONCENTRATION IN CONTROL SUBJECTS
Blood was obtained from 371 healthy volunteers, 194 males and 177 females, aged from 12 to 77 years. The results are shown in table III. There was a significant difference between males and females and there was a significant correlation between the serum pyridoxal level and age.

Discussion
A rapid, sensitive, fully automated method for the measurement of pyridoxal phosphate in serum has been described. The test appears to be specific for pyridoxal since the test organism is relatively insensitive to the other forms of the vitamin B6, pyridoxine and pyridoxamine.

The use of an acid phosphatase provides a simple method of dephosphorylation and is compatible with the requirements of an automated procedure.

Results obtained by the present method are higher than those obtained by Anderson et al (1970). This may be due to the destruction of serum pyridoxal during the hydrolysis procedure which requires prolonged heating; such treatment leaves the pyridoxal standards unaltered. This suggests that there may be some differences between naturally occurring and synthetic pyridoxal and this requires further investigation.

Using the method described it is possible to set up assays at a rate of 80 an hour and to read results at 160 an hour. The method is particularly well suited for use in population and institutional surveys.

We wish to thank the many volunteers who kindly gave samples of their blood for the establishment of the reference range. This work was supported in part by a medical research grant from the University of Western Australia.

References

Reports and Bulletins prepared by the Association of Clinical Biochemists

The following reports and bulletins are published by the Association of Clinical Biochemists. They may be obtained from The Administrative Office, Association of Clinical Biochemists, 7 Warwick Court, Holborn, London, WC1R 5DP. The prices include postage, but air mail will be charged extra. Overseas readers should remit by British Postal or Money Order. If this is not possible the equivalent of 50p is the minimum amount that can be accepted.

SCIENTIFIC REPORTS

4 An Evaluation of five Commercial Flame Photometers suitable for the Simultaneous Determination of Sodium and Potassium March 1970 P. M. G. BROUGHTON and J. B. DAWSON 80p ($2)

SCIENTIFIC REVIEWS

1 The Assessment of Thyroid Function March 1971 F. V. FLYNN and J. R. HOBBS 60p ($1.50)

2 Renal Function Tests Suitable for Clinical Practice January 1972 F. L. MITCHELL, N. VEALL, and R. W. E. WATTS 60p ($1.50)

TECHNICAL BULLETINS

9 Determination of Urea by AutoAnalyzer November 1966 RUTH M. HASLAM 40p ($1)

11 Determination of Serum Albumin by AutoAnalyzer using Bromocresol Green October 1967 B. E. NORTHAM and G. M. WIDDOSON 40p ($1)

13 An Assessment of the Technicon Type II Sampler Unit March 1968 B. C. GRAY and G. K. MCGOWAN 40p ($1)

14 Atomic Absorption Spectroscopy. An outline of its principles and a guide to the selection of instruments May 1968 J. B. DAWSON and P. M. G. BROUGHTON 40p ($1)

16 A Guide to Automation in Clinical Chemistry May 1969 P. M. G. BROUGHTON 60p ($1.50)

17 Flame Photometers (2nd edition) 1969 P. WILDING 60p ($1.50)

19 Spectrophotometers. A comparative list of low-priced instruments readily available in Britain May 1970 C. E. WILDE and P. SEWELL 60p ($1.50)

20 Quantities and Units in Clinical Biochemistry June 1970 P. M. G. BROUGHTON 60p ($1.50) More than 30 copies in units of 10 at 20p

21 Filter Fluorimeters: A comparative list of 18 instruments September 1970 H. BRAUNSBERG and S. S. BROWN 60p ($1.50)

22 Bilirubin standards and the Determination of Bilirubin by Manual and Technicon AutoAnalyzer Methods January 1971 BARBARA BILLING, RUTH HASLAM, and N. WALD 60p ($1.50)

23 Interchangeable Cells for Spectrophotometers and Fluorimeters September 1971 E. S. BROWN and A. H. GOWENLOCK 60p ($1.50)

24 Simple Tests to Detect Poisons March 1972 B. W. MEADE et al. 60p ($1.50)

25 Blood Gas Analysers May 1972 K. DIXON 60p ($1.50)

26 Kits for Enzyme Activity Determination September 1972 S. B. ROSALKI and D. TARLOW 80p ($2.00)

27 Assessment of Pumps Suitable for Incorporation into Existing Continuous Flow Analytical Systems November 1972 A. FLECK et al. 60p ($1.50)

28 Routine Clinical Measurements of Transferrin in Human Serum September 1973 K. DIXON 60p ($1.50)

29 Control Materials for Clinical Biochemistry (5th edition) September 1973 J. F. STEVENS 60p ($1.50)

30 Notes on the Quality of Performance of Serum Cholesterol Assays September 1973 S. S. BROWN 60p ($1.50)
An automated method for the microbiological assay of serum pyridoxal
R. E. Davis, B. K. Smith and D. H. Curnow

doi: 10.1136/jcp.26.11.871

Updated information and services can be found at:
http://jcp.bmj.com/content/26/11/871

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/