Micro method for manual analysis of true glucose in plasma without deproteinization

B. B. BAUMINGER

From the Department of Chemical Pathology, Bristol Royal Infirmary, Bristol

SYNOPSIS A sensitive micro method for the manual estimation of true glucose in 10 µl plasma by an enzymatic technique is described. Protein precipitation is avoided.

The method is simple to perform, accurate and precise. Agreement with a glucose oxidase autoanalyser method is excellent, even with haemolysed and icteric specimens.

Although most estimations of blood glucose are now performed by automated methods, a need remains for occasional manual analyses on small samples of blood, particularly in paediatric practice. Ideally, the latter should employ a method which gives results identical with those obtained by the automated routine method, which is most likely to be achieved if the chemistry of both methods is the same.

The automated method employing glucose oxidase described by Trinder (1969a) is highly specific and, after minor modifications to the reagents, was found to be the most accurate and reliable of a number of currently available autoanalyzer methods for glucose estimation when compared with a gas-liquid chromatography reference method (Pennock, Murphy, Seller, and Longdon, 1973). A corresponding manual method by Trinder (1969b), however, requires 100 µl sample, a different colour reagent from the autoanalyzer method, and includes protein precipitation. This method has been modified so that a 10-µl sample is sufficient and protein precipitation is avoided. Moreover, the reagents are exactly the same as in the modified Trinder automated procedure (Pennock et al, 1973).

Method

REAGENTS

1 Phenol reagent
20-25 mM phenol in 0-154 M sodium chloride solution.

2 Enzyme reagent
Fermcozyme, 15 ml, 15 mg peroxidase, and 1-48 mM 4-aminophenazone in 0-1 M sodium acetate/acetic acid buffer at pH 6-0. It is kept at 4°.

3 Stock glucose solution
100 mmol/l, 18-02 g of glucose in 1 litre distilled water saturated with benzoic acid (0-024 M)

4 Standard glucose solutions
Diluted from stock solution using distilled water saturated with benzoic acid to the following concentrations: 0-5, 1-0, 2-5, 5-0, 10-0, and 15 mmol glucose/l

PROCEDURE

Sample, standards, and reagent blank
Deliver 10 µl of plasma, standards, or distilled water into a series of small tubes. Add to each tube 550 µl of phenol reagent, mix well, and then add 550 µl of enzyme reagent and shake the tubes.

Plasma blank
To 10 µl of plasma add 1-1 ml of phenol reagent and mix well.

Place all tubes in a water bath at 45° for 20 minutes. Shake the tubes briefly two or three times during incubation to ensure adequate aeration. Cool immediately to room temperature by standing in cold water, shake each tube, and measure the absorbence at 510 nm. Subtract the absorbence readings of the plasma blank and reagent blank from those of the tests.

For freshly prepared solutions the reagent blank should have an absorbence not exceeding 0-01.
Calculation
The graph relating absorbence to glucose concentration is linear through the origin.
Glucose concentration =

\[
\frac{A_{\text{Test}} - A_{\text{Plasma blank}} - A_{\text{Reagent blank}}}{A_{\text{Standard}} - A_{\text{Reagent blank}}} \times
\]

Concentration of standard.
*A = absorbence

Experiments and Results
A Pye Unicam SP 600 spectrophotometer with SP 680 micro cell accessory was used in the following experiments:

1 Properties of the Colour Reaction
Colour development is maximal after 20 minutes' incubation at 45°. Higher absorbences are obtained at this temperature than at 37°; the former temperature was therefore adopted. The colour is stable at room temperature for at least 60 minutes and maximal absorption occurs at 510 nm.

2 Precision
The within-batch precision of the proposed micro method was calculated from 12 determinations of glucose on each of three different plasma specimens. The results are summarized in Table I and indicate that the proposed method has good precision.

In recovery experiments a known amount of glucose was added to plasma and recoveries ranging from 96 to 98% were obtained.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean (mmol glucose/l)</th>
<th>Coefficient of Variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (n = 12)</td>
<td>1.71</td>
<td>2.34</td>
</tr>
<tr>
<td>2 (n = 12)</td>
<td>3.13</td>
<td>0.76</td>
</tr>
<tr>
<td>3 (n = 12)</td>
<td>5.51</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Table I Precision (within batch) of plasma glucose estimation

3 Comparison of the Proposed Method with the Standard Autoanalyzer Procedure
When the manual micro method was compared with the autoanalyzer method samples were analysed by both methods on the same day so that deterioration of samples on storage should not influence the results.

Fifty-nine samples of plasma were analysed by both methods and the results are shown in the figure.

Table II Effect of haemolysis on the estimation of glucose in plasma by the micro method and autoanalyzer method

<table>
<thead>
<tr>
<th>Plasma No.</th>
<th>mmol Glucose/l Plasma</th>
<th>Micro Manual Method</th>
<th>Autoanalyzer Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.65</td>
<td>4.58</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.05</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.66</td>
<td>2.74</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.58</td>
<td>4.61</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8.71</td>
<td>8.77</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.07</td>
<td>3.99</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.42</td>
<td>1.44</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.39</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.84</td>
<td>3.83</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.52</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10.20</td>
<td>10.21</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13.76</td>
<td>13.76</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.43</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.25</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.04</td>
<td>3.99</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>14.18</td>
<td>14.26</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>16.01</td>
<td>15.98</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5.50</td>
<td>5.44</td>
<td></td>
</tr>
</tbody>
</table>

1Averages of duplicate determinations
5 EFFECT OF HAEMOLYSIS
Preliminary experiments showed that haemolysis and bilirubin interfere with the determination of glucose. This is eliminated by including a plasma blank.

The absorbence of the plasma blank in a series of specimens showing haemolysis varied from 0.015 to 0.04 measured with the Pye Unicam SP 600 spectrophotometer, corresponding to glucose concentrations of 0.42 to 1.11 mmol/l. The results obtained for these specimens by the micro technique and autoanalyzer method are given in table II. Agreement is excellent with a correlation coefficient of 0.999.

I wish to thank Dr G. Walters for valuable suggestions. Thanks are also due to the staff of the automated section who analysed the samples by the autoanalyzer method.

References
Micro method for manual analysis of true glucose in plasma without deproteinization

B. B. Bauminger

doi: 10.1136/jcp.27.12.1015

Updated information and services can be found at: http://jcp.bmj.com/content/27/12/1015

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/