Normal and pathological serum levels of α₂-macro-globulins in men and mice

ANITA M. TUNSTALL, J. M. L. MERRIMAN, I. MILNE, AND K. JAMES

From the Department of Surgery, University Medical School, Teviot Place, Edinburgh

SYNOPSIS The serum levels of α₂-macro-globulin have been measured in normal men and mice and in a number of immunopathological conditions. Normal human concentrations are high in youth, reach their minimum in middle age, and gradually increase with old age. In all age groups the mean is higher in the female than in the male. Conversely, in normal mice the α₂M level is low in youth, maximum in middle age, and shows a slight depression with old age, and the levels are frequently higher in males than in females; there are also strain variations.

In human immunopathological conditions, there are some deviations from the normal α₂M level but these are seen to be changes from the normal distribution of values around the mean, rather than significant elevation or depression of mean values. In some disease states studied there are differences between the sexes in the deviation from normal.

‘Abnormal’ strains of mice had α₂M levels within the range exhibited by ‘normal’ mice but changes in the levels are seen in mice with various myelomas.

In recent years there have been reports indicating an association between α₂-macroglobulin (α₂M, MW 820 000) and the development and function of lymphocytes (McNeill, 1970; Havemann, Dosch, and Bürger, 1970; Chase, 1972; Ford, Caspary, and Shenton, 1973). There are also indications that it is present on the surface of a subpopulation of lymphocytes (Sell, 1970; McCormick, Nelson, Tunstall, and James, 1973; James, Tunstall, Parker, and McCormick, 1974) and may be synthesized by peripheral blood lymphocytes (van Furth, Shuit, and Hijmans, 1966; Tunstall and James, 1974). It was therefore thought important to establish normal serum levels of α₂M in men, over which there has been some controversy (Adham, Wilding, Mehl, and Haverback, 1968), and in mice, and to look at levels in various pathological states with emphasis on those involving disturbances of the immune status.

Materials and Methods

PREPARATION OF ANTISERA

Antisera to human and mouse α₂M were produced in New Zealand white rabbits by injection of purified preparations of α₂M. The human α₂M was isolated by repeated zonal ultracentrifugation of Cohn fraction III O (kindly given by Ortho Pharmaceuticals, Raritan, New Jersey) and the mouse α₂M by starch block electrophoresis of the 19S G200 Sephadex fraction of normal mouse serum. On days 0 and 21 the α₂M (2 mg in Freund’s complete adjuvant) was given intramuscularly into three or four sites, and a third injection (2 mg in alum) was given intraperitoneally on day 42. The rabbits were bled on day 49 and at three to four week intervals thereafter without further challenge. The antisera were rendered monospecific for α₂M by absorption; the antihuman α₂M was absorbed with the low molecular weight ultracentrifuge fraction of Cohn III-O, the antimouse α₂M with the 7S fraction of normal mouse serum (obtained by G200 Sephadex gel filtration).

ESTIMATION OF α₂M

Serum α₂M was measured by a standard Mancini gel diffusion method. Standard antigen in four different concentrations was included on every plate. The standard for the human measurement was a human α₂-macroglobulin reference obtained from Meloy Laboratories Inc (Springfield, Virginia, USA). The mouse standard consisted of a pool of normal serum, 25 µl from each of 40 female A/HeJ mice aged between 5 and 6 months.

The human measurements are given in milligrams
of α_2M per dl whereas those for mice are given as a percentage of the standard serum. Serum samples from mice were diluted 1 in 2 with buffer before application to the plates.

SERUM SAMPLES

Normal human serum samples were obtained from healthy donors, aged 18-70, from the Blood Transfusion Service, Royal Infirmary, Edinburgh. Approximately 20 samples per decade for each sex were tested.

Table I shows the human pathological sera tested, giving the diagnosis and numbers of patients.

<table>
<thead>
<tr>
<th>Disease</th>
<th>No. of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic lymphatic leukaemia</td>
<td>23, 8</td>
</tr>
<tr>
<td>Acute lymphatic leukaemia</td>
<td>2, 1</td>
</tr>
<tr>
<td>Chronic myeloid leukaemia</td>
<td>5, 2</td>
</tr>
<tr>
<td>Acute myeloid leukaemia</td>
<td>6, 4</td>
</tr>
<tr>
<td>Lymphosarcoma</td>
<td>12, 15</td>
</tr>
<tr>
<td>Reticulum cell sarcoma</td>
<td>4, 2</td>
</tr>
<tr>
<td>Hodgkin's disease</td>
<td>17, 16</td>
</tr>
<tr>
<td>Myeloma</td>
<td>13, 16</td>
</tr>
<tr>
<td>Macroglobuinaemia</td>
<td>5, 12</td>
</tr>
<tr>
<td>Melanoma</td>
<td>4, 2</td>
</tr>
<tr>
<td>Pemphigoid</td>
<td>1, 5</td>
</tr>
<tr>
<td>Mycosis fungoid</td>
<td>4, 2</td>
</tr>
<tr>
<td>Dermatitis herpetiformis</td>
<td>14, 10</td>
</tr>
<tr>
<td>Bronchogenic carcinoma</td>
<td>17, 1</td>
</tr>
<tr>
<td>Breast carcinoma</td>
<td>- 8</td>
</tr>
</tbody>
</table>

Table I Clinical diagnoses of patients

Individual mouse serum samples were obtained by killing under ether and bleeding from the inferior vena cava. Ten strains of mice were tested at the ages of 6-8 weeks, 12-16 weeks, and 1 year and over. Approximately 20 mice of each sex in each age group were tested. A/HeJ, Balb/c, CBA, C57Bl, and C3H mice were obtained by brother-sister mating of breeding pairs originally obtained from sources described in a previous paper from this laboratory (James and Milne, 1972). (CBA × A)F1 hybrids were bred from this stock. AKR mice and NZB mice were also bred in this department from stock supplied by the Zoology Department, University of Edinburgh, and the Immunology Department, Middlesex Hospital Medical School, London, respectively. Old AKR mice have a tendency to develop thymomas and NZB mice to develop autoimmune disease. Athymic nu/nu mice were purchased from the Medical Research Council Laboratory Animal Centre (Carshalton, England), and Schneider Swiss mice, reared under specific pathogen-free conditions, were obtained from the Animal Diseases Research Organization (Moredun Institute, Edinburgh).

α_2M serum levels were also measured in Balb/c mice bearing the following myelomas, IgG1 (MPC 25), IgG2a (ADJPC5), IgM (MOPC 104EM), and IgA (MOPC 47a).

PRESENTATION OF RESULTS

The α_2M values of groups of normal men and mice are expressed as arithmetic means ± 2 standard errors. Due to age and sex variations, and the wide individual variations, the levels of α_2M in pathological sera have been plotted individually, and comments will be made on those which are appreciably elevated or depressed: the arithmetic mean ± 2 standard errors of normal sera are represented as shaded areas on the figures showing the pathological levels.

Results

HUMAN α_2-MACROGLOBULIN LEVELS

Normal human serum levels of α_2M for each sex are shown in figure 1. The results are expressed as the arithmetic mean ± 2 standard errors for donors from each decade. It should be noted that over this age range, males had lower levels than females. Levels of α_2M in cord blood and young children have been found to be very high (James, Johnson, and Fudenberg, 1966; Ganrot and Schersten, 1967) and to fall fairly rapidly from 15 to 20 and to continue to decline more gradually until the age of 30 to 40. A similar decline in α_2M levels was found in these studies; however, instead of reaching a plateau level, the levels in both sexes appeared to be rising in the higher age groups. Samples from normal individuals over 70 years of age were not tested. It is reasonable to conclude from these results that both the age and sex of the patient have to be taken into account when assessing levels of α_2M in pathological sera.

The levels of α_2M in the sera of leukaemic patients are shown in figure 2. The largest group were those

Fig 1 Normal human α_2M serum levels (arithmetic means ± 2 standard errors)
Normal and pathological serum levels of \(\alpha_2 \)-macroglobulins in men and mice

with chronic lymphatic leukaemia and of these, 11 out of 23 males and two out of six females had depressed \(\alpha_2 \)M levels whereas five males and four females had elevated levels. In the case of the patients with acute myeloid leukaemia, five out of the six males and two out of the four females had depressed levels. In the chronic myeloid leukaemia and acute

lymphatic leukaemia cases there were too few patients to establish any trend.

Fifty per cent of the patients with Hodgkin's disease had elevated levels of serum \(\alpha_2 \)M whilst those with lymphosarcoma showed a bias towards depressed levels. All the six patients with reticulum cell sarcoma had elevated levels (fig 3). There

Fig 2 Human \(\alpha_2 \)M serum levels in patients with leukaemia

In figs 2-5 the shaded areas represent the arithmetic mean of normal serum \(\alpha_2 \)M levels, ± 2 standard errors

Fig 3 Human \(\alpha_2 \)M serum levels in patients with sarcomas
was no apparent correlation between the α_2M serum level and the stage of the Hodgkin's disease.

The serum levels of patients with macroglobulinaemia and various myelomas are shown in figure 4. Of the patients with IgG myelomas, 50% had depressed α_2M levels, but the sex distribution was uneven, more females than males having low levels. The two light chain myelomas and two IgD myelomas tested also had depressed α_2M, but of the three IgM myelomas one was normal, one elevated, and one depressed. The IgA myelomas appeared to be associated with a normal or elevated level of α_2M. In general the patients with macroglobulinaemia had depressed α_2M levels.

Sera from a number of other pathological conditions were also tested for α_2M, including non-
Normal and pathological serum levels of \(\alpha_2\)-macroglobulins in men and mice

malignant diseases with a possible immunological aetiology, and malignancies of non-lymphoid tissues, and the results are shown in figure 5. In all of these conditions there appears to be a fairly even distribution above and below normal levels.

The \(\alpha_2\)M serum levels in normal mice are shown in figure 6. In general, young mice had the lowest level and the highest levels were reached either in middle or old age. Male mice frequently had higher levels than female mice of the same age and strain.

The levels of some abnormal mouse strains are shown in table II and all these levels, with one exception, where the mice were only 5 weeks old, fell within the range of levels covered by the normal strains. The levels in myeloma-bearing Balb/c mice compared with age- and sex-matched normals are shown in figure 7. It is apparent that IgA, IgM, and IgG2a myelomas caused the \(\alpha_2\)M level to be depressed whereas in the case of IgG myelomas, the level was normal in males and elevated in females.

![Fig 6 Normal \(\alpha_2\)M levels in mice (arithmetic means ± 2 standard errors)
Age of mice:
- 6-8 weeks, ≈ 3-4 months, ± over 1 year.]

![Fig 7 \(\alpha_2\)M serum levels in Balb/c mice with myelomas. The shaded areas represent the arithmetic mean ± 2 standard errors of age-matched normal Balb/c Mice.]

<table>
<thead>
<tr>
<th>Strain</th>
<th>Abnormality</th>
<th>(\alpha_2)M Standard Serum (%)(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKR</td>
<td>High incidence of spontaneous thymomas in aged mice</td>
<td>127 ± 6 123 ± 3 122 ± 8 114 ± 4</td>
</tr>
<tr>
<td>Nu/nu</td>
<td>Congenitally athymic</td>
<td>109 ± 8 86 ± 4</td>
</tr>
<tr>
<td>Schneider Swiss</td>
<td>Specific pathogen free</td>
<td>77 ± 4* 101 ± 2</td>
</tr>
<tr>
<td>NZB</td>
<td>Develop autoimmune haemolytic anaemia</td>
<td>132 ± 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strain</th>
<th>Abnormality</th>
<th>(\alpha_2)M Standard Serum (%)(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKR</td>
<td>High incidence of spontaneous thymomas in aged mice</td>
<td>127 ± 6 123 ± 3 122 ± 8 114 ± 4</td>
</tr>
<tr>
<td>Nu/nu</td>
<td>Congenitally athymic</td>
<td>109 ± 8 86 ± 4</td>
</tr>
<tr>
<td>Schneider Swiss</td>
<td>Specific pathogen free</td>
<td>77 ± 4* 101 ± 2</td>
</tr>
<tr>
<td>NZB</td>
<td>Develop autoimmune haemolytic anaemia</td>
<td>132 ± 6</td>
</tr>
</tbody>
</table>

Table II Some \(\alpha_2\)M serum levels of 'abnormal' strains of mice

\(^1\)Values given are arithmetic means ± 2 standard errors.

\(^*\)These mice were 5 weeks old.
Discussion

The normal human serum levels of \(z_2M \) reported here agreed with those found by James et al (1966) and, in addition, the age and sex differences found confirmed the findings of Ganrot and Scherstén (1967) and other workers (James et al, 1966; Housley, 1968).

Elevation of the \(z_2M \) globulin fraction of serum is common in patients with various malignant and non-malignant disorders (Sunderman and Sunderman, 1964), but in many of these reports there has been no differentiation between low molecular weight \(z_2 \) globulins and \(z_2 \)-macroglobulins. Few measurements of \(z_2M \) have been carried out on patients with immunological disorders; however, in those who were studied (James et al., 1966; Housley, 1968) a number of changes were found, and the variations from normal were found to be dependent on the sex in certain disorders.

In the present study of immunopathological states, the mean \(z_2M \) levels were not significantly different from normals as there was wide variability in individual levels. However, in several states the distribution of the individual \(z_2M \) levels did not follow the normal pattern. For example, in chronic lymphatic leukaemia the distribution of \(z_2M \) levels was below the normal mean in males, and above in females, and in acute myeloid leukaemia both sexes had a distribution lower than normal. In the cases of sarcomas studied, those with reticulum cell sarcoma had elevated levels, those with lymphosarcoma tended to have depressed levels, whilst those with Hodgkin’s disease, a sarcoma of mixed lymphocytic and reticulocytic type, 50% of the levels were above the normal mean. In a number of malignancies that did not directly involve immune systems, the distribution of \(z_2M \) levels was normal.

It is interesting to note from the results of the measurements on mouse sera that the changes in concentration with age and sex appeared to be the reverse of those found in man, results similar to those of Ganrot (1968) with rat and ox sera. There were significant differences in \(z_2M \) levels between various strains of mice, but these did not correlate with immunologically high or low responders. The ‘abnormal’ strains had levels within the range covered by the more ‘normal’ strains.

Another difference between man and mouse was seen in the myelomas. In man the \(z_2M \) levels in IgG myelomas were depressed, whereas in mouse they were normal (male) or elevated (female), and, where in men with IgA myelomas the level was elevated, in mice it was depressed. Because of these differences between men and mice, caution must be observed in extrapolating from experimental mouse models to the human situation.

These measurements of serum \(z_2M \) levels do not help to elucidate the precise role of \(z_2M \), but they do indicate that in disturbances of the immune system and in the cells that are involved in the immune response, there are perturbations in the \(z_2M \) levels. It still remains to be established whether \(z_2M \) levels could be of help in diagnosis or prognosis, and whether they are influenced by therapy, and further studies on these aspects are being carried out in this laboratory.

The authors wish to thank Dr A. E. Robertson and her staff of the Blood Transfusion Service for providing normal human serum samples, and Drs J. G. McVie, A. C. Parker, R. A. Allardce, J. A. A. Hunter, and Professors G. J. A. Clunie and G. Gowland for the serum samples from patients. They also wish to thank Professor M. F. A. Woodruff for his encouragement, and Drs James and Tunstall thank the Medical Research Council for their financial support.

References

Normal and pathological serum levels of α_2-macroglobulins in men and mice

Reports and Bulletins prepared by the Association of Clinical Biochemists

The following reports and bulletins are published by the Association of Clinical Biochemists. They may be obtained from The Publishing Department, British Medical Journal (ACB Technical Bulletins), B.M.A. House, Tavistock Square, London WC1H 9JR. Overseas readers should remit by British Postal or Money Order.

SCIENTIFIC REPORTS (price £1.00/$2.00 each)

4 An Evaluation of five Commercial Flame Photometers suitable for the Simultaneous Determination of Sodium and Potassium March 1970 P. M. G. BROUGHTON and J. B. DAWSON

SCIENTIFIC REVIEWS (price £1.00/$2.00 each)

1 The Assessment of Thyroid Function March 1971 F. V. FLYNN and J. R. HOBBS

TECHNICAL BULLETINS (price £1.00/$2.00 each)

9 Determination of Urea by AutoAnalyzer November 1966 RUTH M. HASLAM

11 Determination of Serum Albumin by AutoAnalyzer using Bromocresol Green October 1967 B. E. NORTHAM and G. M. WIDDOWSON

13 An Assessment of the Technicon Type II Sampler Unit March 1968 B. C. GRAY and G. K. MCGOWAN

14 Atomic Absorption Spectroscopy: an outline of its principles and a guide to the selection of instruments May 1968 J. B. DAWSON and P. M. G. BROUGHTON

16 A Guide to Automation in Clinical Chemistry May 1969 P. M. G. BROUGHTON

17 Flame Photometers: a comparative list of 17 instruments readily available in Britain August 1969 P. WILDING

19 Spectrophotometers: a comparative list of low-priced instruments readily available in Britain May 1970 C. E. WILDE and P. SEWELL

20 Quantities and Units in Clinical Biochemistry June 1970 P. M. G. BROUGHTON

21 Filter Fluorimeters: A comparative list of 18 instruments September 1970 H. BRAUNSBERG and S. S. BROWN

22 Bilirubin Standards and the Determination of Bilirubin by Manual and Technicon AutoAnalyzer Methods January 1971 BARBARA BILLING, RUTH HASLAM, and N. WALD

23 Interchangeable Cells for Spectrophotometers and Fluorimeters September 1971 S. S. BROWN and A. H. GOWENLOCK

24 Simple Tests to Detect Poisons March 1972 B. W. MEADE et al.

25 Blood Gas Analysers May 1972 K. DIXON

26 Kits for Enzyme Activity Determination September 1972 S. B. ROSALKI and D. TARLOW

27 Assessment of Pumps Suitable for Incorporation into Existing Continuous Flow Analytical Systems November 1972 A. FLECK et al.

28 Routine Clinical Measurements of Transferrin in Human Serum September 1973 K. DIXON

29 Control Materials for Clinical Biochemistry (5th edition) September 1973 J. F. STEVENS

30 Notes on the Quality of Performance of Serum Cholesterol Assays September 1973 S. S. BROWN

31 Determination of Uric Acid in Blood and in Urine July 1974 R. W. E. WATTS

32 A Survey of Amino Acid Analyzers Readily Available in the United Kingdom September 1974 J. E. CARLYLE and P. PURKISS

33 Definitions of some Words and Terms used in Automated Analysis November 1974 A. FLECK, R. ROBINSON, S. S. BROWN, and J. R. HOBBS

34 Measurement of Albumin in the Sera of Patients January 1975 LINDA SLATER, P. M. CARTER, and J. R. HOBBS
Normal and pathological serum levels of alpha2-macroglobulins in men and mice.
A M Tunstall, J M Merriman, I Milne and K James

J Clin Pathol 1975 28: 133-139
doi: 10.1136/jcp.28.2.133

Updated information and services can be found at:
http://jcp.bmj.com/content/28/2/133

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/