Adenoid cystic carcinoma of the breast: prevalence, diagnostic criteria, and histogenesis

P. P. Anthony and P. D. James

From the Bland-Sutton Institute of Pathology, Middlesex Hospital Medical School, London W1

SYNOPSIS Three cases of adenoid cystic carcinoma have been identified in a 10-year review of 2686 cases of breast carcinoma. The criteria necessary for diagnosis have been reviewed with particular reference to cribriform intraduct carcinoma and adenocarcinoma of the breast with a small, dark, 'basaloid'-cell pattern. The most important single diagnostic criterion of adenoid cystic carcinoma is a biphasic cellular pattern which may be aided by the demonstration of two types of mucin—stromal acid mucopolysaccharide and ductal neutral mucopolysaccharide. This tumour most frequently presents as a painful or tender mass near the areola, and it carries a uniquely favourable prognosis when compared with similar tumours elsewhere in the body. Actomyosin has been demonstrated in all three tumours by an immunofluorescent method, and this supports a predominantly myoepithelial origin.

Adenoid cystic carcinoma (adenocystic carcinoma, cylindroma, basaloid carcinoma) is best known as a tumour of salivary glands though it infrequently also occurs at other sites in the body—the tracheobronchial tree, nasopharynx, maxillary sinus, uterine cervix, and the skin. The tumour is characteristically made up of small, dark, ovoid cells with a sieve-like or cribriform pattern of growth, and small cysts may form. These cells resemble the basal cells of epithelial surfaces or myoepithelial cells. In addition, small, duct-like structures are also seen. The well-differentiated cytological features belie a tendency to infiltrate, recur, and metastasize. The prognosis is generally poor (Evans and Cruickshank, 1970).

Galloway et al (1966) reported nine cases of adenoid cystic carcinoma occurring in the breast, none of which recurred or metastasized after mastectomy. Since that time numerous reports have appeared, mainly from the United States and the European continent, which have confirmed the excellent prognosis at this site. These have been summarized in table I. Single case reports have been omitted except those which illustrate some unusual feature. The rarity of this tumour in the breast and the difficulty of distinguishing it from other lesions, notably intraduct carcinoma, sclerosing adenosis, and epitheliosis, have been repeatedly emphasized (Cavanzo and Taylor, 1969; Friedman and Oberman, 1970; Lusted, 1970). Histogenesis remains doubtful, and ultrastructural studies have been inconclusive (Koss et al, 1970; Woyke et al, 1970).

Recent interest in adenoid cystic carcinoma of the breast and the diagnostic problems associated with it have stimulated us to review our own material of breast tumours over a 10-year period in order to assess prevalence and to review criteria for diagnosis.

We have also undertaken an investigation of the possible myoepithelial origin of this tumour with the use of immunofluorescent techniques.

Materials and Methods

During the 10 years from 1961 to 1970 some 2686 cases of breast carcinoma were seen at this institute. All the sections were reviewed in a search for adenoid cystic carcinoma and tumours closely resembling it. The term adenoid cystic carcinoma is the one recommended by the World Health Organization in preference to other synonyms (Thackray and Sobin, 1972). Twenty-six were found in which this diagnosis might have been considered by a reasonably experienced pathologist. The blocks from these cases were re-cut and stained with haematoxylin-eosin, periodic acid-Schiff (PAS) reaction with and without diastase, alcian blue at pH 2-6, combined alcian blue-PAS (Mowry, 1956).
Table I Adenoid cystic carcinoma of the breast: a summary of salient features in 62 cases

<table>
<thead>
<tr>
<th>Reference</th>
<th>No. of Cases</th>
<th>Age Range (av.)</th>
<th>Sex</th>
<th>Duration of Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nayer (1957)</td>
<td>1</td>
<td>39</td>
<td>F</td>
<td>1 yr</td>
</tr>
<tr>
<td>O'Kell (1964)</td>
<td>3</td>
<td>47-76 (59)</td>
<td>F</td>
<td>8 d-6 mth</td>
</tr>
<tr>
<td>Galloway et al (1966)</td>
<td>9</td>
<td>44-80 (53)</td>
<td>F</td>
<td>2 d-15 yr</td>
</tr>
<tr>
<td>Wilson and Spell (1967)</td>
<td>1</td>
<td>54</td>
<td>F</td>
<td>3 mth</td>
</tr>
<tr>
<td>Cavanzo and Taylor (1969)</td>
<td>21</td>
<td>31-69 (50)</td>
<td>F</td>
<td>Few weeks-many years</td>
</tr>
<tr>
<td>Ehner (1970)</td>
<td>7</td>
<td>38-80 (50)</td>
<td>F</td>
<td>2 mth-12 yr</td>
</tr>
<tr>
<td>Friedman and Oberman (1970)</td>
<td>5</td>
<td>53-76 (63)</td>
<td>F</td>
<td>7 d-6 mth</td>
</tr>
<tr>
<td>Koss et al (1970)</td>
<td>5</td>
<td>41-77</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Lusted (1970)</td>
<td>4</td>
<td>42-65 (52)</td>
<td>F</td>
<td>2 wk-11 yr</td>
</tr>
<tr>
<td>Woyke et al (1970)</td>
<td>1</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Hopkins and Tullis (1972)</td>
<td>3</td>
<td>33-53 (43)</td>
<td>F</td>
<td>3-5 mth</td>
</tr>
<tr>
<td>Verani and van der Bel-Kahn (1973)</td>
<td>2</td>
<td>63-78 (52)</td>
<td>F</td>
<td>6 wk-10 yr</td>
</tr>
</tbody>
</table>

Table II Brief details of three cases of adenoid cystic carcinoma of the breast

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Sex</th>
<th>Duration (weeks)</th>
<th>Presentation</th>
<th>Site</th>
<th>Size (cm)</th>
<th>Treatment</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61</td>
<td>F</td>
<td>4</td>
<td>Tender mass</td>
<td>Periareolar</td>
<td>3 x 1</td>
<td>Radical mastectomy</td>
<td>Alive and well 6 yr later</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>F</td>
<td>8</td>
<td>Mass</td>
<td>Upper outer quadrant</td>
<td>2</td>
<td>Local excision followed by radiotherapy</td>
<td>Alive and well 9 yr later</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>F</td>
<td>6</td>
<td>Tender mass</td>
<td>Lateral to nipple</td>
<td>2</td>
<td>Radical mastectomy</td>
<td>Alive and well 3 yr later</td>
</tr>
</tbody>
</table>
Adenoid cystic carcinoma of the breast: prevalence, diagnostic criteria, and histogenesis

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Site</th>
<th>Size (cm)</th>
<th>Treatment</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tender or painful mass in four cases</td>
<td>4 near areolar</td>
<td>0-6-3</td>
<td>Radical mastectomy</td>
<td>Dead of disseminated malignant disease 13 yr later. No necropsy</td>
</tr>
<tr>
<td>Mass in breast 'sometimes tender'</td>
<td>Near nipple</td>
<td>2-8</td>
<td>Simple mastectomy</td>
<td>Two alive and well 1 yr and 1 yr 3 mth later. One died of metastases 3½ yr later</td>
</tr>
<tr>
<td>Painful mass in two cases</td>
<td>3 periareolar</td>
<td>2-4</td>
<td>Simple mastectomy</td>
<td>Local recurrence 7½ and 15½ yr later</td>
</tr>
<tr>
<td>Painful mass in one case</td>
<td></td>
<td>5-8</td>
<td>Simple mastectomy</td>
<td>Metastasis to lung in one case after 6 yr; rest alive and well 2-14 yr later</td>
</tr>
<tr>
<td>Tender mass in two cases</td>
<td>2 subareolar</td>
<td>1-8-3</td>
<td>Radical mastectomy</td>
<td>One died of heart disease; four alive and well 1-4 yr later</td>
</tr>
<tr>
<td></td>
<td>1 subareolar</td>
<td>2-3</td>
<td>Radical mastectomy</td>
<td>Alive and well 2-10 yr later</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>One local recurrence after 22½ yr. All alive and well up to 39 yr later</td>
</tr>
</tbody>
</table>

Table I—continued

The bulk of these tumours was made up of small, dark cells, 4-8 μm in size, oval or elongated in shape, with regular dense nuclei and scanty cytoplasm. The 'cysts' within the lobules were invariably surrounded by such cells (fig 2). In addition, scanty, duct-like structures were also present lined by a single layer of cuboidal cells with paler nuclei and more abundant, finely granular cytoplasm. Though not fully differentiated, these resembled normal breast ductules (fig 3). They were present in all three cases but were found only after prolonged search, usually within smaller masses. Mitoses were rarely seen anywhere in these tumours and necrosis was absent.

The 'cysts' contained loose, fibrillar or mucoid material often with a capillary blood vessel in the centre, and sometimes with peripheral condensation adjacent to surrounding tumour epithelium (fig 2). In some, this process had led to hyalinization either in a lace-like or globular pattern, resembling the pattern seen in a 'mixed' tumour (pleomorphic adenoma) (fig 4). The duct-like structures showed tubular lumina that did not communicate with 'cysts' and were free of fibrillary material, capillaries or hyalin.

Histochemistry

The contents of the 'cysts' gave a strong positive reaction with alcian blue and were PAS negative in contrast to the contents of the duct-like structures which were weakly positive with alcian blue and strongly positive with PAS. In the combined alcian blue-PAS preparations, the 'cysts' were alcian blue positive and the ducts PAS positive (table III). The PTAH stain failed to demonstrate myofibrils though

<table>
<thead>
<tr>
<th>Tumour</th>
<th>PAS</th>
<th>Alcian Blue</th>
<th>PAS + Alcian Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenoid cystic carcinoma</td>
<td>Ducts -</td>
<td>'Cysts' -</td>
<td>Ducts PAS -</td>
</tr>
<tr>
<td>Cribriform intraduct carcinoma</td>
<td>Ducts and 'cysts' + +</td>
<td>Ducts and 'cysts' + +</td>
<td>Ducts and cysts PAS +</td>
</tr>
<tr>
<td>'Basaloid' tumour</td>
<td>'Cysts' + +</td>
<td>'Cysts' alcyan blue +</td>
<td></td>
</tr>
</tbody>
</table>

Table III Summary of staining reactions for acid and neutral mucopolysaccharides

some scattered granular staining was seen in some areas. The media of small blood vessels stained strongly positive.

Immunofluorescence

A strong, though scattered cytoplasmic fluorescence was seen in all three tumours, generally in small cell masses (figs 5-6) and was equal in intensity to the reaction given by the smooth muscle media of small blood vessels in the same sections (figs 7-8) and by skeletal muscle and myocardium in the control sections.

Cribriform intraduct carcinoma

Whole tumours or selected areas within them gave rise to differential diagnostic difficulty in 19 such cases. The resemblance to adenoid cystic carcinoma proved, however, to be superficial on detailed examination. Cribriform intraduct carcinomas also formed distinct masses but these were rounded rather than lobulated in outline, and a basement membrane could usually be demonstrated.
Fig 1 Lobulated masses of adenoid cystic carcinoma of the breast with characteristic 'Swiss cheese' pattern and finger-like extensions into stroma (Haematoxylin-eosin × 35).

Fig 2 Small, dark, uniform cells enclosing 'cysts' which contain loose, fibrillar material (Haematoxylin-eosin × 85).

Fig 3 Duct-like structures (Haematoxylin-eosin × 220).
Adenoid cystic carcinoma of the breast: prevalence, diagnostic criteria, and histogenesis

Fig 4 Hyalinization of the stroma within 'cysts' gives rise to pleomorphic adenoma-like pattern (Haematoxylin-eosin × 138).

Fig 5 Adenoid cystic carcinoma viewed by phase contrast (× 138).

Fig 6 Adjacent section stained for actomyosin by immunofluorescence (× 138).
Fig 7 Small blood vessel viewed by phase contrast (× 138).
Fig 8 Same vessel stained for actomyosin by immunofluorescence (× 138).

Fig 9 Detail of cribriform intraduct carcinoma (Haematoxylin-eosin × 138).
Adenoid cystic carcinoma of the breast: prevalence, diagnostic criteria, and histogenesis

Individual tumour cells were larger with variable nuclei, a more open chromatin pattern, and often prominent nucleoli. The cytoplasm was more abundant and finely granular. The cells tended to show a polar arrangement around duct-like or cystic lumina which contained mucus (fig 9). Mitoses and areas of necrosis were frequently present. They stained positively with both alcian blue and PAS, and in combined preparations, with PAS rather than with alcian blue (table III). No immunofluorescent staining was obtained with anti-actomyosin serum in the two cases tested.

'Basaloid' Tumours
Four tumours consisted of lobulated masses with a cribriform pattern but lacked other criteria considered necessary for the diagnosis of adenocystic carcinoma. The tumour cell masses were much more disorderly, and the individual cells were more pleomorphic and lacked a biphasic pattern with small duct-like structures (fig 10). The 'cysts' stained only with alcian blue (table III). Occasional flecks of immunofluorescence to actomyosin were seen but were not considered significant. It is possible that these 'basaloid' tumours (so designated because of their similarity to basal or myoepithelial cells) do, in fact, represent a more malignant or, at any rate, less well differentiated variant of adenoid cystic carcinoma, but this could not be established with certainty and these tumours should remain classified with 'ordinary' adenocarcinoma of the breast.

Discussion
Nearly a hundred cases of adenoid cystic carcinoma of the breast have been reported in the world literature to date, most of them in the last five years. Table I summarizes some salient features. The age range and the average age of patients are not distinctive. It is a tumour affecting almost exclusively women though two examples in men have been recorded (Woyke et al, 1970; Verani and van der Bel-Kahn, 1973). The duration of symptoms is variable but often quite long—months or even many years. It is worth noting that Lusted (1970) had calculated the linear growth rate of the tumour in one case as 2·4 mm per year. Presentation is generally with a mass in the breast. In four of the nine cases reported by Galloway et al (1966) the lump was painful and/or tender. Cavanzo and Taylor (1969) comment on their 21 cases that 'the main presenting symptom was a mass in the breast, sometimes tender'. Pain or tenderness was also reported by Friedman and Oberman (1970), Lusted (1970), and Hopkins and Tullis (1972). This was also the case in two of our three patients. The tumour often arises in the nipple area (Galloway et al, 1966; Friedman and Oberman, 1970; Hopkins and Tullis, 1972; Verani and van der Bel-Kahn, 1973). This was so in two of our three cases. The size of the tumour is generally 1 to 3 cm, though it occasionally is much larger. Macroscopically it presents as a fairly well defined, sometimes lobulated mass which may be grossly cystic.

The prognosis of adenoid cystic carcinoma of the breast is much better than that of similar tumours elsewhere in the body. Nearly one-third of the patients with tumours at other sites have regional or distant metastases at the time of first presentation, and local recurrence followed by further spread is common; five-year survival, on average, is about 30% (Cavanzo and Taylor, 1969). By contrast, there are very few instances where adenoid cystic carcinoma of the breast has shown a similarly aggressive behaviour. Local recurrence has been recorded in only four cases (Wilson and Spell, 1967; Cavanzo and Taylor, 1969; Lusted, 1970) and metastases in
only five (Nayer, 1957; O'Kell, 1964; Elsner, 1970; Verani and van der Bel-Kahn, 1973) of which two are incompletely documented (Nayer, 1957; O'Kell, 1964). Several authors have advocated local excision or at most simple mastectomy as adequate treatment. Certainly, in one case only has regional lymph node metastasis been found (Verani and van der Bel-Kahn, 1973), and axillary dissection would seem superfluous.

At the outset of this 10-year review of breast tumours it was expected that a number of adenoid cystic carcinomas might be found which had been misdiagnosed. This has not turned out to be the case: only three unequivocal examples were identified. The risk lies not in failure to recognize but in overdiagnosis, which may be stimulated by numerous recent reports. Strict criteria must be used in differential diagnosis, particularly from cribriform intraduct carcinoma which has also been emphasized by Galloway et al. (1966), Friedman and Oberman (1970), and Lusted (1970). This can be achieved by examination of routine sections stained with haematoxylin-eosin alone, but the demonstration of acid mucopolysaccharides in 'cysts' and of neutral mucopolysaccharides in small duct-like lumina is of additional help. We believe that the 'cysts' represent invaginations of young connective tissue stroma, and this has been previously established by serial sectioning of whole tumours (Lusted, 1970) and by electron microscopy (Koss et al., 1970). The main mass of the tumour consists of myoepithelial cells producing acid mucopolysaccharides and fibrillar connective tissue while the scanty duct-like structures probably represent differentiation towards mammary duct epithelium, capable of secreting PAS-positive mucus. This, again, is supported by previous reports on ultrastructure (Eneroth et al., 1968; Murad and von Haam, 1968; Koss et al., 1970). We consider this biphasic cellular pattern to be the most important single diagnostic criterion of adenoid cystic carcinoma.

The identity of 'basaloid' tumours remains in doubt. We feel that tumours with such appearances should be regarded as variants of 'ordinary' adenocarcinoma unless evidence to support a myoepithelial origin can be found. We have not been able to demonstrate actomyosin in two of four cases.

The histogenesis of adenoid cystic carcinoma is of interest in view of its biphasic histological pattern and distinctive clinical behaviour. The cytological features suggest that it originates from myoepithelial cells, but it also has a secretory, ductal element, and electron microscopy studies have shown evidence of both types of cell. The interpretation of ultrastructural appearances has given rise to some controversy between those who favour a pre-dominantly ductal epithelial or a predominantly myoepithelial origin (Koss et al., 1970). Filamentous material resembling myofibrils has also been demonstrated with phosphotungstic acid-haematoxylin (Friedman and Oberman, 1970), but we have not been able to confirm this.

Immunological studies on tissue sections are usually performed on fresh frozen, unfixed or cold alcohol-fixed, paraffin-embedded material (Sainte-Marie, 1962). Recent reports, however, have shown that an increasing amount of immunological work is being performed on routine, formalin-fixed, paraffin-embedded material. A study on intracellular immunoglobulins comparing three standard tissue processing methods showed that immunofluorescence from formalin-fixed, paraffin-embedded tissues compared favourably with that obtained using either fresh frozen or the Sainte-Marie method of tissue preservation (Burns et al., 1974). We have similarly not experienced any difficulty in demonstrating actomyosin by immunofluorescence in routinely processed tissues.

The demonstration of myofibrils in our three cases of adenoid cystic carcinoma using specific antiserum to actinomyosin and an indirect immunofluorescent technique is strong evidence of a myoepithelial origin of these tumours. The presence of myofibrils by immunofluorescent methods has not been reported previously. We would further suggest that pain and tenderness may also be caused by a contractile, myoepithelial component.

References

Adenoid cystic carcinoma of the breast: prevalence, diagnostic criteria, and histogenesis

The July 1975 Issue

THE JULY 1975 ISSUE CONTAINS THE FOLLOWING PAPERS

Neutrophil alkaline phosphatase score in chronic granulocytic leukaemia: effects of splenectomy and antileukaemic drugs
A. S. D. SPIERS, A. LIEW, AND A. G. BAIKIE

Simple screening tests for the diagnosis of isolated clotting factor defects

Extraction of serum vitamin B12 for radio-isotopic and *Lactobacillus leichmannii* assay
J. L. RAVEN AND M. B. ROBSON

An automated immunoradiometric assay for ferritin
B. M. JONES AND M. WORWOOD

A study of immunoglobulin M antibody to measles, canine distemper, and rinderpest viruses in sera of patients with subacute sclerosing panencephalitis
DOROTHY THOMSON, J. H. CONNOLLY, B. O. UNDERWOOD, AND F. BROWN

Sensitivity of some human pathogenic yeasts and systemic fungi to myxin
AWATER S. SEKHON AND ERIKA HARGESHEIMER

Interaction in vitro between synovial cells and autologous lymphocytes and sera from arthritis patients
T. GHOSE, J. F. WOODBURY, AND M. M. HANSELL

Liver disease in infancy: histological features and relationship to α1-antitrypsin phenotype
I. C. TALBOT AND A. P. MOWAT

Injury and repair of tracheobronchial cartilage following accidental exposure to ethyleneimine
G. A. GRESHAM AND I. E. WEST

Myocardial lysis in acute rheumatic fever followed by regeneration of cardiac muscle and origin of Aschoff bodies
HEMPROVA GHOSH MCDONALD

Bilateral fibrosarcoma of the epididymis
MALCOLM MCCORMACK

Use of a computer for producing microbiological reports and for data storage and processing
J. L. FARRAR, T. D. BROGAN, T. MOULDING, R. TAYLOR, AND M. PAGE

Evaluation and utilization of a kinetic enzyme direct measuring photometer
PAUL L. WOLF

Revised list of abbreviations for names of enzymes of diagnostic importance
D. N. BARON, D. W. MOSS, P. G. WALKER, AND J. H. WILKINSON

Staining of the A antigen on human erythrocytes
D. Y. MASON AND C. R. TAYLOR

Preparation of ‘contact product’ as a reagent for coagulation tests
J.-L. PÉREZ-REQUEJO AND G. I. C. INGRAM

Letters to the Editor

Book reviews

Copies are still available may be obtained from the PUBLISHING MANAGER,
BRITISH MEDICAL ASSOCIATION, TAVISTOCK SQUARE, LONDON WC1H 9JF, price £2.00.
Adenoid cystic carcinoma of the breast: prevalence, diagnostic criteria, and histogenesis.

P P Anthony and P D James

doi: 10.1136/jcp.28.8.647

Updated information and services can be found at:
http://jcp.bmj.com/content/28/8/647

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/