Avian erythrocyte agglutination tests with the sera of bird fanciers

J. A. DIMENT AND J. PEPPYS

From the Department of Clinical Immunology, Cardiothoracic Institute, Brompton, London SW3 6HP

SUMMARY The agglutination of avian red cells, particularly pigeon and budgerigar cells, by sera from patients who had been exposed to birds and had respiratory symptoms, as well as from healthy bird fanciers, has been used to detect the presence of avian specific antibody. Agglutination tests performed by standard techniques using bird erythrocytes can be read within 45 minutes. One hundred and sixty-five sera were tested, and the 44 which were precipitin positive gave a positive agglutination test with one exception. Of 61 sera which gave positive agglutination tests, 43 gave positive precipitin tests with unconcentrated serum and seven others after fourfold concentration of the serum. Avian antibodies were demonstrated in the remaining 11 sera by radioimmunoelectrophoretic tests. Absorption of the sera with pigeon IgG and IgM and the use of animal antiserum directed against pigeon IgG showed that the agglutination reactions were mediated by antibodies directed against pigeon IgG and IgM, and against light chains derived from pigeon IgG.

Bird fancier’s lung is a respiratory disease associated with the inhalation of dusts of avian materials by persons who keep birds (Barboriak et al., 1965; Reed et al., 1965; Hargrave et al., 1966; Faux et al., 1971). The sensitized subjects develop antibodies against a variety of antigens (Faux et al., 1971; Berrens and Maesen, 1972), the major ones usually being directed against the bird serum albumins and globulins (Edwards et al., 1970; Faux et al., 1971). Radioimmunoassays have been developed to measure antibodies to both pigeon albumin (Hargrave et al., 1974) and pigeon IgG (Nielsen et al., 1974), but these are multistage procedures and not suitable for routine use. Haemagglutination of sheep red cells coated with avian serum proteins is yet another convenient and sensitive method for detecting avian specific antibody (Faux et al., 1971). There is also a report that the serum of two patients with bird fancier’s lung agglutinated pigeon, budgerigar, and chicken red blood cells (Bach et al., 1971). Further studies have been made of the latter simple test which has the additional advantage of rapidity because of the speed with which nucleated avian red blood cells settle in agglutination tests (Cayzer et al., 1974).

Material and methods

HUMAN SERA
Blood from patients attending the routine allergy clinics at the Brompton Hospital was allowed to clot at room temperature overnight and the serum was removed after centrifugation. Other sera were sent for testing by clinicians in other parts of the United Kingdom and Europe. Sera from healthy blood donors who were asked to fill in a questionnaire on their history of bird exposure were used as controls.

BIRD ERYTHROCYTES
Pigeon and budgerigar cells were obtained by amputating the wing of a bird which had been anaesthetized with ether and collecting the blood in Alsever’s solution, or by direct cardiac puncture in the pigeon. The yield was increased by prior intraperitoneal administration of heparin (Evans Medical, Speke, Liverpool), 100 units for a budgerigar and 250 units for a pigeon. The cells were used after several washings in phosphate buffered saline, pH 7.2 (PBS), or stored in Alsever’s solution containing thiomersal (0-1 g/l). They were stored for up to two weeks at 4°C, and were washed several times with PBS immediately before use. Adult chicken red blood cells were purchased from Tissue Culture Services (Slough, England) and turkey red blood cells were obtained from a local turkey farmer.

Pigeon red blood cells were formalinized using the method described by Csizmas (1960).

ANIMAL ANTISERA
Rabbit anti-pigeon serum, rabbit anti-budgerigar
serum, and rabbit anti-hen serum were purchased from Bio-Service (Tower Hill, London). Anti-pigeon IgG was raised in an adult Portland Wistar Cross rat by a primary intramuscular injection of pigeon IgG (0.25 mg in an emulsion of 0.2 ml of saline and 0.2 ml of complete Freund’s adjuvant) followed by a booster after one month with the same quantity of antigen in incomplete Freund’s adjuvant. The animal was bled two weeks later.

PIGEON AND BUDGERIGAR GLOBULINS

Pigeon macroglobulin was isolated as described by Faux et al. (1971) on Sephadex G-150. Pigeon and budgerigar IgG were prepared by precipitation of other proteins with caprylic acid followed by adsorption with DEAE-cellulose (Steinbuch and Audran, 1969). Both these materials showed one arc on immunoelectrophoresis after diffusion against rabbit anti-pigeon serum and rabbit anti-budgerigar serum respectively.

PIGEON IgG LIGHT CHAINS

Pigeon IgG was reduced with mercaptoethanol, alkylated with iodoacetamide, and chromatographed on Sephadex G-75 in 1 M acetic acid (Fleischman et al., 1962). The material eluted in the second peak was homogeneous with a molecular weight of about 25000 on gradient polyacrylamide gel electrophoresis.

PIGEON AND HEN ALBUMIN

Pigeon albumin was isolated in poor yield by passing pigeon serum through a blue dextran-Sepharose column followed by elution of the retained material with 6 M urea (Travis and Pannell, 1973). The urea was removed by exhaustive dialysis and the material was lyophilized. Hen albumin was obtained from Miles Laboratories (Stoke Poges, Buckinghamshire). Both these materials showed one arc in the albumin region on immunoelectrophoresis and diffusion against rabbit anti-pigeon serum and rabbit anti-hen serum respectively.

AVIAN ERYTHROCYTE AGGLUTINATION TEST

Standard U-bottomed, rigid, disposable microtitre plates, loops (0.05 ml), and pipettes (0.05 ml) were employed. One drop of 1% horse serum in PBS was added to each well, followed by 0.05 ml of patient serum to the first well, and then by doubling dilutions for successive wells. Red blood cells at a concentration of 1% in PBS were then added to each well. The plates were allowed to stand and were read after 40 minutes. Absorption tests were made by adding the antigen to the initial PBS-horse serum in every well. The concentrations used are shown in Table 6.

A control serum of known titre and a negative serum were included in every series of plates. The control negative serum was a pool from healthy blood donors who reported no or little bird exposure and whose sera gave agglutination titres in the upper range for this group.

DOUBLE-DIFFUSION AND IMMUNOELECTROPHORESIS

The Ouchterlony agar-gel method (Pepys et al., 1964) was modified for precipitin testing so that the central well in 5 mm thick agar was 6 mm in diameter and was 2 mm distant margin to margin from the peripheral antigen well which was 3 mm in diameter. This method, adopted for reasons of economy of the budgerigar serum, is less sensitive than the previous method in which the corresponding dimensions in 6 mm thick agar were 13 mm, 4 mm, and 4 mm. Immunoelectrophoresis was done on agarose (BDH, Poole, Dorset) using Svensson’s buffer (Weeke, 1973). Indirect radioimmunoelectrophoretic tests were made, the patients’ IgG, IgA, and IgM being immobilized in the gel by an anti-human immunoglobulin serum (Hyland, Thetford, Norfolk). This was followed by addition to the troughs of, or by immersing the whole plate in, pigeon or budgerigar IgG (labelled with 125I by the chloramine-T method (Hunter, 1974)), in 30% horse serum as the carrier protein solution. After standing overnight, the plates were washed for one to two days in saline plus 0.05% Tween 20 (Koch-Light, Colnbrook Buckinghamshire), then dried, stained, and exposed to x-ray films for a suitable time.

Where necessary, 2 ml samples of sera were concentrated by lyophilization and were reconstituted in 0.5 ml of water.

POLYACRYLAMIDE ELECTROPHORESIS

This was performed on gradient gels according to the methods suggested by the manufacturer (Pharmacia, Uppsala, Sweden). Chymotryptsinogen A, bovine serum albumin, and aldolase (molecular weights 25 000, 67 000, and 158 000 respectively) (Boehringer Mannheim, Ealing, London) were used as standards to estimate molecular weights.

Results

TEST VARIATIONS AND THEIR CONTROL

Table 1 shows the agglutination titres of the different avian erythrocytes by the sera of selected bird fanciers. Pigeon and budgerigar cells gave the highest titres. Chicken erythrocytes gave low titres with these bird fanciers as well as with rabbit anti-chicken serum antiserum (Table 2). The use of erythrocytes from individual birds and ageing of the cells caused some variation in agglutination titres with the patients’
Avian erythrocyte agglutination tests with the sera of bird fanciers

Sera. Small differences in the concentration of red cells used in the test also contributed to inter-test variation. The test variation was not greater than two twofold dilutions for pigeon cells and one twofold dilution for budgerigar cells. Differences were also observed in the ability of serum from apparently unexposed subjects to agglutinate these erythrocytes. Sera were rated positive when they gave titres greater than fourfold above the control with pigeon cells and greater than twofold with budgerigar cells. This usually meant that a titre of 64 or upwards was regarded as positive with pigeon cells and a titre of 32 as positive with budgerigar cells.

Agglutination titres of avian erythrocytes with the sera of patients and healthy bird fanciers

Agglutination titres of the sera of a group of patients

Table 1 Avian erythrocyte agglutination by selected bird fancier's sera: titre

<table>
<thead>
<tr>
<th>Avian species</th>
<th>Patient C Pigeon fancier</th>
<th>Patient H Pigeon fancier</th>
<th>Patient Th Budgerigar fancier</th>
<th>Median of pooled negative serum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigeon rbc</td>
<td>1028</td>
<td>2048</td>
<td>512</td>
<td>16</td>
</tr>
<tr>
<td>Formalized pigeon rbc</td>
<td>128</td>
<td>256</td>
<td>128</td>
<td>8</td>
</tr>
<tr>
<td>Budgerigar rbc</td>
<td>512</td>
<td>256</td>
<td>4096</td>
<td>4</td>
</tr>
<tr>
<td>Chicken rbc</td>
<td>8</td>
<td>64</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>Turkey rbc</td>
<td>64</td>
<td>256</td>
<td>128</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2 Avian erythrocyte agglutination by antisera to avian serum proteins: titre

<table>
<thead>
<tr>
<th>Avian species</th>
<th>Rabbit anti-pigeon serum</th>
<th>Rabbit anti-budgerigar serum</th>
<th>Rabbit anti-chicken serum</th>
<th>Rat anti-pigeon IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigeon rbc</td>
<td>1024</td>
<td>1024</td>
<td>512</td>
<td>128</td>
</tr>
<tr>
<td>Formalized pigeon rbc</td>
<td>128</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Budgerigar rbc</td>
<td>128</td>
<td>128</td>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>Chicken rbc</td>
<td>8</td>
<td>8</td>
<td>64</td>
<td>na</td>
</tr>
<tr>
<td>Turkey rbc</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

na = not available.

Table 3 Pigeon erythrocyte agglutination titres with sera of (1) exposed patients with respiratory symptoms, and (2) healthy bird fanciers

Exposed mainly to Pigeon
No. of sera Agglutination titre
Below 64 64, 128 256, 512 Above 512
Patients
Pigeon 34 11 3 10 10
Budgerigar 47 35 7 2 3
Other birds 9 8 1 0 0
Healthy fanciers
Pigeon 11 5 3 3 0
Budgerigar 26 26 0 0 0
Other birds 1 1 0 0 0

Ten of the 11 had been pigeon fanciers for more than five years.

Table 4 Budgerigar erythrocyte agglutination titres with sera of (1) exposed patients with respiratory symptoms, and (2) healthy bird fanciers

Exposed mainly to Budgerigar
No. of sera Agglutination titre
Below 32 32, 64 128, 256 Above 256
Patients
Pigeon 34 12 3 9 10
Budgerigar 47 35 6 2 4
Other birds 9 8 1 0 0
Healthy fanciers
Pigeon 11 5 3 3 0
Budgerigar 26 26 0 0 0
Other birds 1 1 0 0 0

Ten of the 11 had been pigeon fanciers for more than five years.
who had been referred to the Brompton Hospital with respiratory symptoms and a history of bird exposure are compared with the titres of the sera from a group of healthy bird fanciers in Table 3 using pigeon cells, and in Table 4 using budgerigar cells. In the bird fanciers with respiratory disease, raised agglutination titres to pigeon erythrocytes were given by 67% of the pigeon fanciers and by 28% of budgerigar fanciers. Raised agglutination titres against budgerigar erythrocytes were given by 65% of the pigeon fanciers and by 26% of the budgerigar fanciers. Of the healthy pigeon fanciers, 54% gave raised but lower titres to both pigeon and budgerigar erythrocytes. None of the healthy budgerigar fanciers had raised titres to either pigeon or budgerigar erythrocytes.

Table 5 shows that the pigeon erythrocytes gave more agglutination reactions with the sera which had given precipitin positive reactions without concentration in the Ouchterlony test. Further tests on 19 sera where negative agar-gel precipitin tests were given initially, and where positive agglutination titres were given to either pigeon or budgerigar erythrocytes, showed that seven gave positive precipitin tests after fourfold concentration of the serum, and 11 showed binding of either pigeon or budgerigar IgG on radioimmunoelectrophoresis. The remaining serum, which had an agglutination titre of 64 to pigeon erythrocytes, gave negative reactions to the further tests and came from a healthy blood donor with no history of bird exposure.

The serum from one pigeon fancier who had not been exposed to birds for 10 years gave positive precipitin reactions to both pigeon and budgerigar serum without a raised agglutination titre. On immunoelectrophoresis the serum showed only a single arc to pigeon and budgerigar β-globulin.

Antigen Absorption Tests

Tables 6 and 7 show that absorption of the patients’ sera with pigeon serum, pigeon gammaglobulin, macroglobulin and light chains prepared from pigeon IgG inhibited the agglutination of pigeon erythrocytes and budgerigar erythrocytes, whereas pigeon and hen albumin had no effect.

Discussion

We have confirmed the report by Bach et al. (1971) that the sera of bird fanciers can agglutinate red blood cells from pigeon, budgerigar, and chicken. Rabbit anti-pigeon serum, rabbit anti-budgerigar serum, and rabbit anti-chicken serum also agglutinated the bird erythrocytes. The inhibition of agglutination of pigeon and budgerigar cells by absorption of the patients’ sera with pigeon gammaglobulin and macroglobulin showed that these contained reacting antigens. The observation that light chains of pigeon gammaglobulin also inhibited the agglutination of pigeon erythrocytes suggests that they were among the antigens with which the antibodies were reacting. Bird fanciers are known to produce antibodies against antigens in bird droppings which cross-react with pigeon globulins (Edwards et al., 1970). Rat anti-pigeon gammaglobulin agglutinated pigeon cells to a titre of 128, thus confirming the presence of the gammaglobulin or a cross-reacting antigen on the red cells. The possibility that other antigens, such as the P1 antigen described by Radermecker et al. (1975), may also contribute to the agglutination has not been excluded.

Table 6 *Absorption of test sera—effect on pigeon erythrocyte agglutination test titres*

<table>
<thead>
<tr>
<th>Absorption with</th>
<th>Bovine serum albumin 30 mg/ml</th>
<th>Hen albumin 30 mg/ml</th>
<th>Pigeon serum 10%</th>
<th>Pigeon IgG 0-5 mg/ml</th>
<th>Pigeon IgG light chains 0-1 mg/ml</th>
<th>Pigeon macroglobulin 1 mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wr</td>
<td>1024</td>
<td>1024</td>
<td>4</td>
<td>1024</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>Bev</td>
<td>256</td>
<td>256</td>
<td>2</td>
<td>256</td>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>Dew</td>
<td>512</td>
<td>1024</td>
<td>8</td>
<td>512</td>
<td>32</td>
<td>256</td>
</tr>
<tr>
<td>Bea</td>
<td>512</td>
<td>512</td>
<td>4</td>
<td>1024</td>
<td>32</td>
<td>na</td>
</tr>
<tr>
<td>Utt</td>
<td>1024</td>
<td>1024</td>
<td>2</td>
<td>1024</td>
<td>64</td>
<td>256</td>
</tr>
<tr>
<td>Rabbit anti-pigeon serum</td>
<td>256</td>
<td>256</td>
<td>2</td>
<td>256</td>
<td>32</td>
<td>na</td>
</tr>
</tbody>
</table>

na = not available.
Avian erythrocyte agglutination tests with the sera of bird fanciers

Table 7 Absorption of test sera—effect on budgerigar and turkey erythrocyte agglutination test titres

<table>
<thead>
<tr>
<th>Absorption with</th>
<th>Budgerigar rbc agglutination</th>
<th>Turkey rbc agglutination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bovine serum albumin 30 mg/ml</td>
<td>Pigeon serum IgG 0-5 mg/ml</td>
</tr>
<tr>
<td>Wr</td>
<td>512</td>
<td>32</td>
</tr>
<tr>
<td>Utt</td>
<td>512</td>
<td>8</td>
</tr>
<tr>
<td>Bev</td>
<td>521</td>
<td>128</td>
</tr>
</tbody>
</table>

It has been shown by Nielsen et al. (1974) that their assay of antibodies to pigeon 7S gammaglobulin gives a reliable indication of antibody in sera of bird fanciers' lung, but they also found that sera of asymptomatic fanciers can give titres which overlap with those of affected fanciers. We obtained similar results, three healthy pigeon fanciers giving agglutination titres in the 256-512 range. Patients with definite evidence of bird fancier's lung had titres in the range 128 to 8192 against pigeon cells and 64 to 4096 against budgerigar cells.

Although the antigen absorption experiments showed that there were similar or related antigens on the different avian red cells, higher titres were given in some cases in tests with pigeon red cells than with those of the species to which the patient had been exposed. It seems that the patient's serum should be tested with pigeon erythrocytes as well as with those of the species to which he had been exposed. The report of an inverse effect of avian red cell concentrations and of ageing of the cells on agglutination titres (Soda et al., 1971) shows that care is needed to ensure comparability of results in repeat tests.

The avian erythrocyte agglutination test described here provides an additional method for detecting antibody in the sera of bird fanciers. The test can be completed within 45 minutes as the settling of nucleated bird erythrocytes is rapid and, in our hands, costs less than precipitin tests using budgerigar serum. The results of the precipitin test correlate well with the agglutination test although the latter appears to be more sensitive in terms of antibodies to the avian immunoglobulins. Of 104 sera which were agglutination positive, 18 were precipitin negative. Antibodies were detected in 17 of these sera by more sensitive radioimmunoassay methods; the remaining serum gave a titre of 64 with pigeon red cells and 16 with budgerigar cells and came from a subject who reported no exposure to birds. The possibility of non-antibody mediated agglutination also has to be considered, as well as the possibility that antibodies may be present against the other avian serum proteins and may not react with the antigens on the red cells. Thus one patient who had antibodies only to a β-globulin in the precipitin test gave a negative agglutination test.

The use of turkey red blood cells as a support for the coupling of antigens is likely to find increasing use in the routine laboratory. Two such tests have already been described, for Treponemal (Sequeira and Eldridge, 1973) and for hepatitis B antigen (Cazyer et al., 1974). False-positive reactions in terms of these latter antigens may, however, be obtained even after absorption of the sera of pigeon and budgerigar fanciers with turkey erythrocytes.

References

Pepys, J., Longbottom, J. L., and Jenkins, P. A. (1964)
Vegetable dust pneumoconioses. Immunological responses to vegetable dusts and their flora. *Amer. Rev. resp. Dis.*, 89, 842-858.

Avian erythrocyte agglutination tests with the sera of bird fanciers.
J A Diment and J Pepys

J Clin Pathol 1977 30: 29-34
doi: 10.1136/jcp.30.1.29

Updated information and services can be found at:
http://jcp.bmj.com/content/30/1/29

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/