Alpha₁-fetoprotein in the diagnosis of hepatoma: statistical and cost benefit aspects

P. J. PHILLIPS, R. ROWLAND, D. P. REID, AND M. E. COLES

From the Institute of Medical and Veterinary Science, Frome Road, Adelaide, and the Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000

SUMMARY A rational comparison of different serum concentrations of alpha₁-fetoprotein (S-AFP) in the diagnosis of hepatoma must be made. We took data on the sensitivity and specificity of different diagnostic S-AFP concentrations from the literature and evaluated them statistically and by Bayesian analysis. In our patients (hepatoma prevalence 0·028) a sensitive diagnostic concentration (30-50 ng/ml) will misdiagnose hepatoma so often that a positive test will indicate hepatoma in only 10% of cases. A positive test at a specific diagnostic concentration (500 ng/ml) indicates hepatoma in 100% of cases and is preferable in terms of cost benefit. Although the lower concentration will diagnose a larger proportion of patients with hepatoma (74% compared with 59%) the ‘costs’ of excluding false positives are considerable (A$2545 per extra case with 2·5% of patients suffering significant morbidity). In western societies, where the prevalence of hepatoma is low, a higher, less sensitive but more specific diagnostic S-AFP concentration is appropriate.

Methodological advances have enabled accurate and reproducible measurements to be made of minute amounts of substances in biological fluids. Unfortunately there is usually an overlap between the diseased and the non-diseased population tested and as an investigation becomes more sensitive it becomes less specific. The use of serum alpha₁-fetoprotein (S-AFP) determination in the diagnosis of primary hepatocellular carcinoma (hepatoma) illustrates that the choice between sensitivity and specificity can be calculated one.

Hepatoma often presents a diagnostic problem since its clinical manifestations are protean and it is usually associated with long-standing cirrhosis (Ihde et al., 1974). The definitive diagnosis is histological but S-AFP determination is used in making a presumptive diagnosis. Although patients with hepatoma can have abnormal S-AFP concentrations so can patients with a wide variety of hepatic and other conditions (Ruoslahti and Seppälä, 1972a; Purves and Purves, 1972; Chayvialle and Ganguli, 1973). There is obviously an optimal diagnostic concentration which will identify most hepatoma patients and not misdiagnose too many non-hepatoma patients, but it has not been defined (Kew, 1974).

This uncertainty can be partly resolved by statistical analyses. By plotting the true positive (TP) ratio against the false positive (FP) ratio a curve called the ‘receiver operating-characteristic’ (ROC) can be constructed (McNeil et al., 1975) (Fig. 1). The curve joins (0,0) the most specific position (where no diseased but all normal patients are correctly diagnosed) to (1,1) the most sensitive position (where all diseased but no normal patients are correctly diagnosed). The optimal operating position lies somewhere between these two points and occurs where the slope of the ROC curve equals (Swets et al., 1964)

\[
\frac{\text{additional cost of false positive result}}{\text{probability of no disease}} = \frac{\text{additional cost of false negative result}}{\text{probability of disease}}
\]

This complex formula is obvious in general terms. If a disease is common and treatment is curative and harmless to the normal patient a sensitive test (or diagnostic concentration) is appropriate and one uses a position to the right where the slope is low. If the disease is rare and the treatment is only palliative
Fig. 1 **ROC curve for different diagnostic serum AFP concentrations.** Numbers refer to references from which the data were taken (see Table 1).

Table 1 References for Fig. 1

<table>
<thead>
<tr>
<th>Point in Fig. 1</th>
<th>Source of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abelev (1971)</td>
</tr>
<tr>
<td>2</td>
<td>Bloomer et al. (1975)</td>
</tr>
<tr>
<td>3</td>
<td>Chayvialle et al. (1974)</td>
</tr>
<tr>
<td>4</td>
<td>Elgort et al. (1972)</td>
</tr>
<tr>
<td>5</td>
<td>Foli et al. (1969)</td>
</tr>
<tr>
<td>6</td>
<td>Kohn and Weaver (1974)</td>
</tr>
<tr>
<td>7</td>
<td>Muñoz et al. (1972)</td>
</tr>
<tr>
<td>8</td>
<td>Ruoslahti and Seppälä (1972b)</td>
</tr>
<tr>
<td>9</td>
<td>Smith and O'Neill (1971)</td>
</tr>
<tr>
<td>10</td>
<td>Teres et al. (1970)</td>
</tr>
</tbody>
</table>

and dangerous to the normal patient a specific test is appropriate and one uses a position to the left where the slope is high.

The **ROC curve** can also be used to determine the additional information gained by performing the test (Metz et al., 1973). The **ROC curve** for guessing is a 45° line through the origin and any test which has TP and FP ratios giving a point above this line reduces uncertainty. For a given disease prevalence the extra information gained is maximal at one particular point (the Imax point). This point may be the appropriate operating position.

Tests or diagnostic concentrations with different sensitivities and specificities can also be evaluated by determining the relative 'cost' of a positive diagnosis. 'Costs', however, are difficult to define in purely financial terms and the extra 'cost' of using a more sensitive diagnostic strategy may be justified on non-financial grounds.

Bayesian analysis gives the probability that a positive test in a given population indicates disease and is a further technique of comparison.

This study uses these three approaches in an attempt to help the chemical pathologist to choose the diagnostic S-AFP concentration which is neither too specific nor too sensitive but 'just right'.

Material and methods

Local experience

Over a five-year period 29 patients from the Royal Adelaide Hospital were diagnosed as having a hepatoma. The histological examinations and S-AFP measurements were done at the Institute of Medical and Veterinary Science. The diagnosis was made histologically in 27 patients and from the clinical picture, hepatic scintigraphy, and arteriography in two. S-AFP was measured by an immunodiffusion technique (limit of detection 500 ng/ml) (Kohn, 1970) with 10 positive (range 500-70 000 ng/ml) and seven negative results (TP ratio = 0.59). There were no false positive results in 581 other patients, most of whom had been diagnosed as having cirrhosis.

Statistical analyses

Using the ROC curve

An **ROC curve** (Fig. 1) was constructed from data in reports of different assay methods for AFP used in patients who had liver disease and were of predominantly western European or similar extraction (a total of 543 hepatoma patients and 4362 other patients had been studied). The numbers in Fig. 1 refer to the references from which the data were taken (Table 1). Additional costs are difficult to establish since they include those of performing inappropriate investigations and giving inappropriate treatment. Since hepatoma has a poor prognosis and is not generally amenable to treatment in the group of patients considered (Linder et al., 1974) we may reasonably assume that the additional cost of a false positive (misdiagnosing a patient without hepatoma) is greater than that of a false negative (misdiagnosing a patient with hepatoma). The position of the optimal diagnostic S-AFP concentration will then have a slope greater than

\[
\text{Probability of no hepatoma (PH−)} \times \text{Probability of hepatoma (PH+)}
\]

The points where PH− equals the slope of the ROC curve are shown for the observed (17/598, 0.028) and two higher hepatoma prevalences (0.1, 0.2) in Fig. 2. The **ROC curve** was also used to determine the
setting the diagnosis would be considered established and no further investigations would be performed. If the patient’s S-AFP concentration was less than A but greater than B a liver scan would be performed. If this were positive a scan-guided percutaneous liver biopsy would be performed to establish the diagnosis. If the patient’s S-AFP concentration was less than B hepatoma would be considered to be excluded. Table 2 gives the data concerning the investigations which were used in the calculation of costs for the two diagnostic S-AFP concentrations: the TP and FP ratios, morbidity, and mortality were taken from the literature (Ludbrook et al., 1972; Conn, 1972; Zamcheck and Klausenstock, 1953; Terry, 1952) and the costs quoted are local ones.

By Bayesian analysis

The probability of hepatoma in a patient whose S-AFP concentration was positive or negative at concentration A or concentration B was calculated by Bayesian analysis using the TP and FP ratios and three prevalences quoted above.

Results

Fig. 2 shows that the Imax points and the positions of the optimal diagnostic S-AFP concentrations for the three prevalences are closer to the position of A than to the position of B. The superiority of the less sensitive diagnostic S-AFP concentration is most marked at a low prevalence hepatoma.

Table 3 shows the yield and cost per hepatoma diagnosed by using the less sensitive diagnostic concentration (A) or the more sensitive diagnostic concentration (B) followed by confirmatory investigations. The marginal cost of the more sensitive investigative procedure (the cost of diagnosing each case not diagnosed by using diagnostic concentration A alone) is large ($A2545 for the hepatoma prevalence of this series) and there is significant morbidity.

![Graph](image)

Table 2 Data concerning investigations

<table>
<thead>
<tr>
<th>Technique</th>
<th>Diagnostic AFP concentration A</th>
<th>Diagnostic AFP concentration B</th>
<th>Liver* scan</th>
<th>Liver biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP ratio</td>
<td>0.59</td>
<td>0.93</td>
<td>0.64</td>
<td>0.70†</td>
</tr>
<tr>
<td>FP ratio</td>
<td>0</td>
<td>0.20</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>Cost (A$)</td>
<td>10</td>
<td>10</td>
<td>39</td>
<td>133‡</td>
</tr>
<tr>
<td>Morbidity (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5‡</td>
</tr>
</tbody>
</table>

* Ludbrook et al. (1972).
† Conn (1972).
‡ Cost of liver biopsy includes local fees for a 24-hour hospital stay, the biopsy procedure, clotting studies, and blood grouping and matching.
§ Mortality 0-17% (Zamcheck and Klausenstock, 1953). Morbidity 0.32% (Terry, 1952).
Table 3 Costs of diagnosis of hepatoma (to nearest $45)

<table>
<thead>
<tr>
<th>Hepatoma prevalence</th>
<th>0·028</th>
<th>0·1</th>
<th>0·2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic AFP concentration used</td>
<td>A</td>
<td>B*</td>
<td>A</td>
</tr>
<tr>
<td>Yield (%)*</td>
<td>59</td>
<td>74</td>
<td>59</td>
</tr>
<tr>
<td>Average cost (A$)</td>
<td>605</td>
<td>1000</td>
<td>170</td>
</tr>
<tr>
<td>Marginal cost (A$ per extra case)</td>
<td>—</td>
<td>2545</td>
<td>—</td>
</tr>
<tr>
<td>Morbidity (per 100 extra cases)</td>
<td>—</td>
<td>2·5</td>
<td>—</td>
</tr>
</tbody>
</table>

*Costs for B include those of necessary confirmatory investigations.
†Yield is percentage of hepatomas in population that are diagnosed.
‡Morbidity is the number of patients suffering investigative ill effects per 100 extra cases diagnosed by using diagnostic concentration B and confirmatory investigations but missed by using diagnostic concentration A alone.

Table 4 shows that if the S-AFP concentration is A for the hepatoma prevalence of this series (0·028) hepatoma will be present in 100% of cases, whereas if it is B hepatoma will be present in only 12% of cases.

Discussion

Hepatoma is uncommon in western societies and may by suspected in any patient with deteriorating cirrhosis. If S-AFP is measured to diagnose hepatoma our analyses show that the routine use of a more specific, less sensitive diagnostic S-AFP concentration is appropriate. We do not have enough data on the use of S-AFP measurement for diagnosing hepatoma in other groups of patients. A therapeutic enthusiast might think that measurement of S-AFP concentrations might be useful in detecting hepatoma in patients at risk when the disease is preclinical and treatment might be more effective. Given the likely hepatoma prevalence and TP and FP ratios, however, such screening would mean a large number of patients undergoing further investigations for a small yield.

Table 4 Hepatoma probability for different diagnostic serum AFP concentrations and hepatoma prevalences

<table>
<thead>
<tr>
<th>Hepatoma prevalence</th>
<th>0·028</th>
<th>0·10</th>
<th>0·20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic AFP concentration used*</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Probability of hepatoma if test positive</td>
<td>1</td>
<td>0·12</td>
<td>1</td>
</tr>
<tr>
<td>Probability of hepatoma if test negative</td>
<td>0·01</td>
<td>0·003</td>
<td>0·04</td>
</tr>
</tbody>
</table>

*A = less sensitive, more specific diagnostic serum AFP concentration (500 ng/ml; TP ratio = 0·59, FP ratio = 0).
B = more sensitive, less specific diagnostic serum AFP concentration (50-100 ng/ml; TP ratio = 0·93, FP ratio = 0·20).

P. J. Phillips, R. Rowland, D. P. Reid, and M. E. Coles

The results of our analyses in cirrhotic patients are affected by the probability of hepatoma before measurement of S-AFP. Although the usual hepatoma probability in tested patients is low (< 0·03) there are occasional patients in whom the clinician strongly suspects a hepatoma and the probability may be higher (for example, 0·05-0·5). Theoretically there is an optimal operating position on the ROC curve of a test (S-AFP determination) for a particular prevalence of disease (hepatoma) and that point could be used in diagnosis. An approach to the ideal is possible if an ROC curve is constructed and if the disease probability in the individual patient is estimated by a scoring system of clinical and other features. An operating position (diagnostic S-AFP concentration) can be selected to maximise information or minimise costs. The laboratory can then report the optimal diagnostic serum concentration with the quantitative result or state that the result was positive or negative at this concentration. Alternatively the probability of a particular test result (S-AFP concentration) indicating disease (hepatoma) in an individual patient can be calculated and reported with the result. This is easily done by using the ROC curve to determine the FP and TP ratios associated with the patient’s result, the clinician’s estimate of the patient’s disease probability, and Bayes’s formula. The appropriate operating position on the ROC curve and the disease probability are easily calculated by a computer and would aid in interpreting the test result.

We used statistical methods to develop a rational approach to the use of a test (AFP determination) in the diagnosis of a disease (hepatoma). Although some details are peculiar to the locality the methods are generally applicable. For hepatoma, whatever the method of measuring S-AFP, a less sensitive, more specific diagnostic concentration (500 ng/ml) should be used for the usual western population and a more sensitive, less specific diagnostic concentration (50-100 ng/ml) should be used only for special patient populations with a high prevalence of hepatoma.

We thank the visiting staff of the Royal Adelaide Hospital for permission to study their patients and Dr R. W. Pain for constructive criticism and advice.

References

\textbf{Alpha}_2\text{-fetoprotein in the diagnosis of hepatoma: statistical and cost benefit aspects}

Alpha1-fetoprotein in the diagnosis of hepatoma: statistical and cost benefit aspects.
P J Phillips, R Rowland, D P Reid and M E Coles

doi: 10.1136/jcp.30.12.1129

Updated information and services can be found at:
http://jcp.bmj.com/content/30/12/1129

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/