Effect of bacterial flora on staphylococcal colonisation of the newborn

WILLIAM T. SPECK1, JOHN M. DRISCOLL1, RICHARD A. POLIN1, AND HERBERT S. ROSENKRANZ2

From the Departments of Pediatrics and Microbiology, College of Physicians and Surgeons, Columbia University1, New York, New York 10032 and Departments of Microbiology and Pediatrics, New York Medical College2, Valhalla, New York, 10595, USA

SUMMARY The umbilical and nasopharyngeal flora of newborn infants was examined on days 3, 14, and 42 of life. An analysis of the bacteriological findings suggests that colonisation by either Staphylococcus aureus or Staph. epidermidis prevents colonisation by the other staphylococcus. Similarly, colonisation by Gram-negative bacteria prevents colonisation by staphylococci. Further, this bacterial interference lasts for as long as 42 days, which suggests the possibility of artificially colonising newborns with nonpathogens to prevent subsequent colonisation and disease by virulent microorganisms.

Widespread interest in neonatal bacterial colonisation developed in the 1940s when epidemics of staphylococcal pyoderma first appeared in significant numbers (Allison and Hobbs, 1947; Colbeck, 1949; Shaffer et al., 1956; Shaffer et al., 1957). It was soon established that most infants born in a hospital became nose carriers of Staphylococcus aureus within the first few days of life and the most important hospital sources of these microorganisms were the hands of nursery attendants (Wolinsky et al., 1960; Mortimer et al., 1966). Moreover, it also became apparent that bacterial colonisation began at the umbilicus and subsequently spread to involve other body sites (Mortimer et al., 1966) and that a correlation existed between the rate of bacterial colonisation and the incidence of serious bacterial infection (Smith and Bloomfield, 1950; Forfar et al., 1968; Lancet, 1968). Numerous procedures were developed to limit neonatal colonisation and disease; none of these measures, however, proved completely satisfactory. Recently, therefore, additional attempts were made to develop more effective measures for controlling bacterial colonisation in the newborn nursery (British Medical Journal, 1970).

Recent investigations carried out in our laboratories (Speck et al., 1976, 1977) dealt with the effect of certain topical antimicrobial agents on bacterial colonisation of the newborn. As part of that study we carried out a detailed analysis of the bacterial flora present at various times in our study population. The present report deals with an analysis of the data with a view to determining whether the presence of one sort of bacterial flora prevented colonisation with another. Moreover, because of the topical agents studied (one selectively prevented colonisation with Gram-negative microorganisms while the other possessed activity mainly against Gram-positive bacteria) it was possible to determine whether the establishment of one type of flora prevents a different one from taking root.

Because of its relevance to the health of the newborn, the present analysis focuses on the effect of the nature of the bacterial flora on colonisation with Staph. aureus.

Material and methods

The procedure for selecting newborn infants for inclusion in the study has been described previously (Speck et al., 1977). Two hundred and eighty-six babies were included. The anterior nares and umbilical area of these infants were cultured on days 3, 14, and 42 of life. Cultures were plated on blood agar, McConkey agar, and mannitol-salt agar, and recovered microorganisms were identified by standard bacteriological procedures.

Results

On day 3 of life, 25% of the babies were colonised by Staph. aureus while an equal number were colonised with Staph. epidermidis. Significantly, however, only 3% of the babies were colonised by
William T. Speck, John M. Driscoll, Richard A. Polin, and Herbert S. Rosenkranz

Table 1 Interface between staphylococci

<table>
<thead>
<tr>
<th>Day</th>
<th>Site</th>
<th>Per cent of babies colonised</th>
<th>No. of babies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Staph. aureus only</td>
<td>Staph. aureus + Staph. epidermidis</td>
</tr>
<tr>
<td>3</td>
<td>Umbilicus</td>
<td>25-4</td>
<td>3-4</td>
</tr>
<tr>
<td>14</td>
<td>Umbilicus</td>
<td>26-7</td>
<td>11-6</td>
</tr>
<tr>
<td>42</td>
<td>Umbilicus</td>
<td>18-4</td>
<td>21-1</td>
</tr>
<tr>
<td>14</td>
<td>Nasopharynx</td>
<td>41-2</td>
<td>6-4</td>
</tr>
<tr>
<td>42</td>
<td>Nasopharynx</td>
<td>50-7</td>
<td>6-3</td>
</tr>
</tbody>
</table>

Table 2 Interface between staphylococci and Gram-negative bacteria

<table>
<thead>
<tr>
<th>Day</th>
<th>Site</th>
<th>Per cent of babies colonised</th>
<th>No. of babies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Staphylococcus only</td>
<td>Staphylococcus in presence of Gram-negative</td>
</tr>
<tr>
<td>3</td>
<td>Umbilicus</td>
<td>20-5</td>
<td>8-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staph. aureus</td>
<td>20-9</td>
</tr>
<tr>
<td>14</td>
<td>Umbilicus</td>
<td>31-9</td>
<td>15-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staph. aureus</td>
<td>30-7</td>
</tr>
<tr>
<td>42</td>
<td>Umbilicus</td>
<td>30-5</td>
<td>9-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staph. aureus</td>
<td>55-2</td>
</tr>
<tr>
<td>14</td>
<td>Nasopharynx</td>
<td>45-0</td>
<td>4-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staph. aureus</td>
<td>38-7</td>
</tr>
<tr>
<td>42</td>
<td>Nasopharynx</td>
<td>53-8</td>
<td>1-4</td>
</tr>
</tbody>
</table>

both staphylococcal species (Table 1). (Data for nasopharyngeal colonisation on day 3 are not included because of the very low colonisation rate of that site (Speck et al., 1976, 1977; unpublished results)). On day 14 the umbilical colonisation rate with either Staph. aureus or Staph. epidermidis remained essentially unchanged while the colonisation rate with both species had increased to 12%—still significantly lower than by either species alone (Table 1). Although staphylococcal colonisation of the nasopharynx was higher than that of the umbilicus on day 14, the extent of dual colonisation (6-4%) was remarkably low (Table 1). Even though bacterial interference at the umbilical site was no longer evident on day 42, it was still maintained in the nasopharynx (Table 1).

Staphylococcal colonisation was significantly reduced in the presence of Gram-negative bacteria. This antagonism, which occurred with both Staph. aureus and Staph. epidermidis, continued for at least 42 days (Table 2). Conversely, staphylococci suppressed colonisation with Gram-negative bacteria. However, this inhibition was evident for the first two weeks of life only and was limited to the umbilical area (Table 2).

Discussion

Antagonism between microorganisms has been recognised since 1874 when Roberts noted the 'recognised antagonism between the growth of certain strains of bacteria' (Lancet, 1975). Subsequently there were many other studies dealing with in vitro bacterial interference. Thus diGiacinto and Frazier (1966) were able to document interference between certain coliforms and Staph. aureus while Iandolo and his colleagues (1965) demonstrated antagonisms between streptococci and staphylococci. Bacterial interference occurring in vivo has received less attention. It was reported that strains of Staph. epidermidis inoculated into experimental burns of laboratory animals reduce the severity of infection with hospital strains of Staph. aureus (Wickman, 1970) and that the inoculation of Staph. epidermidis into embryonated hen's eggs 24 hours before challenge with Staph. aureus greatly decreased the mortality rate (Ribble, 1965). The clinical application of bacterial antagonism to humans has received even less attention despite the success of early work with Staph. aureus 502A which showed that this strain inhibited subsequent challenge with more virulent
epidemic staphylococcal strains (Boris et al., 1963; Shinefield et al., 1963).

The mechanism whereby one organism interferes with the growth of another has not been demonstrated in all instances. However, it has been shown that certain microorganisms are capable of elaborating substances which inhibit the growth of other bacteria and/or deplete the environment of specific nutrients which are required for growth of other bacterial species (Reeves, 1965; Ribble, 1965). The role of these phenomena in human colonisation remains speculative; however, the recent demonstration of antibiotic-producing bacteria in the skin flora of 23% of a normal population and the correlation between the presence of these antibiotic-producing strains and an absence of secondary infections suggests that microbial antagonism may be more than a laboratory phenomenon (Selwyn, 1975).

The present data suggest that in the newborn there is interference between Staph. aureus and Staph. epidermidis as well as between either staphylococcus and Gram-negative bacteria. These findings lead one to consider the attractive possibility of using the natural body flora to control colonisation and combat infection. It should be noted that the concept of seeding with non-pathogens to prevent colonisation with disease-causing microorganisms is not new (Boris et al., 1963; Shinefield et al., 1963). However, the present data indicate that this concept should be applied to a new site.

References

Effect of bacterial flora on staphylococcal colonisation of the newborn.

W T Speck, J M Driscoll, R A Polin and H S Rosenkranz

doi: 10.1136/jcp.31.2.153

Updated information and services can be found at:
http://jcp.bmj.com/content/31/2/153

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/