
Serum standards for the bioassay of aminoglycosides in cerebrospinal fluid

S. HAMMERBERG, R. SINAI, AND M. I. MARKS

From the Departments of Pediatrics (Infectious Diseases) and Microbiology, McGill University—Montreal Children's Hospital Research Institute, Montreal, PQ, Canada

SUMMARY Four diluents were compared as reference standards for the assay of gentamicin in cerebrospinal fluid (CSF): human CSF, human serum, distilled water, and 150 mmol NaCl/4·5 mmol CaCl₂. Standards prepared in pooled human serum were the best alternative to CSF for the assay of gentamicin and were also useful for the assay of tobramycin, netilmicin, amikacin, and sisomicin. The pH (6·0-9·8) of CSF did not alter the results of the assay.

The accurate determination of microbiologically active gentamicin in cerebrospinal fluid (CSF) is often critical in the management of patients with Gram-negative bacterial meningitis. Several clinical studies have reported CSF drug concentrations; however, standards for the assay were not specified (Kaiser and McGee, 1971; McCracken, 1972; McCracken and Mize, 1976). Although CSF would seem to be the best diluent for standards, it is often not available. A recent report described an alternative solution for CSF standards (Deacon, 1976a). We compared this artificial diluent (150 mmol NaCl/4·5 mmol CaCl₂) with distilled water, human CSF, and pooled human serum. Since cerebrospinal fluid pH may vary markedly, the effect of pH was also examined. Unlike Deacon's report, our results indicate that CSF or serum is a better diluent for gentamicin standards than the artificial solution or water. Serum was found to be a reliable alternative to CSF for four newer aminoglycosides as well.

Material and methods

Microbiologically active gentamicin was measured by the Bennett agar diffusion assay method using a serum-resistant gentamicin-sensitive Klebsiella pneumoniae as the test organism (Bennett et al., 1966). Bacto antibiotic medium 11 (Difco) was substituted for nutrient agar as the former produced clearer zones of inhibition. A 30-mm square agar plate was flooded with a 1/100 dilution of an overnight growth of the test organism in nutrient broth. The excess inoculum was removed by pipette and the plate was dried by incubation for approximately 45 minutes at 37°C with the lid ajar. Wells (2 mm diameter) were cut in the seeded plate and numbered so that samples were distributed randomly on the plate. Gentamicin standards were prepared in concentrations of 20, 10, 5, 2·5, and 1·25 μg/ml in the various test fluids. Four replications of each sample were performed for each of three tests, and zones of inhibition (mm) were recorded and averaged after 18-20 hours' incubation. Standard curves were plotted on semilog paper. The same method was employed when four other aminoglycosides were assayed to compare CSF and serum as diluents.

CSF was obtained from hospital patients without leptomenigitis or ventriculitis. CSF 1 was from a hydrocephalic patient; CSF 2, 3, and 4 were CSF pools obtained from diagnostic lumbar puncture in febrile infants without meningitis. Human serum was collected from adult volunteers. Glucose, protein, and cell count of the CSF were determined by standard methods. CSF 1, 2, and 3 and different pools of human serum were used for each of three experiments involving gentamicin (Table 1). The NaCl/CaCl₂ solution was prepared as recommended by Deacon (1976a).

The effect of pH was examined with CSF 4. Using 2% HCl and 4% NaOH the samples were adjusted to pH 6, 7, 8·2, 9, and 9·8. Gentamicin was added to each sample to yield a final concentration of 5 μg/ml.

Received for publication 27 July 1977

1Reprint requests: Dr M. I. Marks, Montreal Children's Hospital, 2300 Tupper Street, Montreal, PQ H3H 1P3, Canada
Serum standards for the bioassay of aminoglycosides in cerebrospinal fluid

Table 1 Analyses of four cerebrospinal fluids

<table>
<thead>
<tr>
<th></th>
<th>CSF 1</th>
<th>CSF 2</th>
<th>CSF 3</th>
<th>CSF 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mg/100 ml)</td>
<td>39</td>
<td>64</td>
<td>64</td>
<td>47</td>
</tr>
<tr>
<td>(mmol/l)</td>
<td>2.2</td>
<td>3.6</td>
<td>3.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Protein (g/l)</td>
<td>0.72</td>
<td>0.14</td>
<td>0.09</td>
<td>0.38</td>
</tr>
<tr>
<td>Cell count/mm³</td>
<td>53 polys</td>
<td>0 polys</td>
<td>0 polys</td>
<td>1 poly</td>
</tr>
<tr>
<td></td>
<td>21 lymphs</td>
<td>1 lymph</td>
<td>1 lymph</td>
<td>0 lymph</td>
</tr>
</tbody>
</table>

Results

The average of the results of the standard curves of three experiments with gentamicin diluted in Deacon's solution, distilled water, and pooled human serum is compared to that obtained with pooled human CSF (Figure). The mean difference in zones of inhibition (CSF-alternative diluent) for gentamicin diluted in distilled water when compared to CSF was 1.65 mm (range 1.0 to +2.25 mm), for Deacon's solution 1 mm (range 0.75 to +1.75 mm), and for serum 0.05 mm (range 0 to +0.25 mm). The most accurate approximation of the CSF curve was obtained with standards prepared in pooled human serum (Figure). The zones of inhibition were in exact agreement for one run (CSF 1) and insignificantly different (mean differences CSF-serum +0.35, −0.35 mm) in two other runs using different CSF and serum pools. Pooled human CSF standards of 5 µg/ml gentamicin with a pH of 6, 7, 8.2, 9, and 9.8 gave identical zone sizes. Newer aminoglycosides were assayed to compare standards prepared in CSF and serum. The results of a single experiment with four replications are listed in Table 2 and demonstrate negligible differences in zone diameters between the standards.

Table 2 Difference in zones of inhibition between standards prepared in CSF and serum

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>CSF-serum (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean difference</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>0.25</td>
</tr>
<tr>
<td>Netilmicin</td>
<td>0.24</td>
</tr>
<tr>
<td>Amikacin</td>
<td>0.21</td>
</tr>
<tr>
<td>Sisomicin</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Discussion

The activity of gentamicin in serum is subject to various physiological conditions, that is, effect of pH, ionic strength, protein, serum, etc. (Rubenis et al., 1963; Deacon, 1976b; Shanson and Daniels, 1975). We found no report comparing gentamicin activity in pooled human serum and CSF. It would be technically convenient to be able to assay both serum and CSF gentamicin concentrations using one set of reference standards. The results of our studies indicate that this is valid for gentamicin as well as for four newer aminoglycosides and that the use of distilled water or electrolyte solutions may lead to considerable inaccuracies. The reasons for the lack of agreement of our results with those of Deacon (1976a) are unclear. Technical differences such as the use of a single assay plate for all samples in our study versus the use of several separate plates by Deacon (1976a) may be responsible. Shanson and Daniels (1975) reported that ionic content affected serum standards when the pH was altered from 7.5 to 6.7. On testing this phenomenon by comparing serum and CSF standards at pH 6.4, 8, and 9.3, no effect was demonstrable. This difference in results is probably due to the extreme sensitivity of Shanson and Daniels' assay organism and the use of 7-mm rather than 2-mm wells. The advantages in sensitivity offered by their method may be outweighed by the inaccuracies incurred through the use of separate plates for each sample. In conclusion, using the assay method described in this study, drug standards prepared in pooled human serum are reliable for the microbiological assay of CSF gentamicin concentrations as well as those of tobramycin, sisomicin, amikacin, and netilmicin.

References

The January 1978 issue

THE JANUARY 1978 ISSUE CONTAINS THE FOLLOWING PAPERS

Use of cell cultures as an indicator of pathogenicity of free-living amoebae RAY T. M. CURSONS AND TIM J. BROWN

Specific and non-specific resistance to aminoglycosides in Escherichia coli S. L. MAWER AND D. GREENWOOD

Evaluation and application of an improved bacteriocin typing method for Klebsiella aerogenes G. W. HEDDELL AND A. A. B. MITCHELL

Identification of Enterobacteriaceae by the API 20E system B. HOLMES, W. R. WILLCOX, AND S. P. LAPAGE

Detection of capsulated Haemophilus influenzae in chest infections by counter current immunoelectrophoresis MICHELE MCINTYRE

An assessment of radial haemolysis in the detection of rubella antibody B. GEE, BARBARA E. JORDAN, AND P. R. MORTIMER

Complex nature of serum lysozyme activity: evidence of thermolability in inflammatory bowel disease M. WARD, W. D. MITCHELL, AND M. EASTWOOD

Early detection of folic acid deficiency in elderly patients C. G. L. RAPER AND M. CHOUDHURY

Measurement of red cell folate with 78Se-selenofolate radioassay IAN JOHNSON AND MICHAEL ROSE

A whole blood control for the Coulter Model S L. O. MORGAN, W. G. JONES, J. FISHER, AND I. CAVILL

A rapid screening test for reduced fibrinolytic activity of plasma: streptokinase activated lysis time E. GIDRON, R. MARGALIT, AND Y. SHALITIN

Serum bile acids in patients with hyperlipidaemia C. R. PENNINGTON, P. E. ROSS, M. C. BATESON, AND IAN A. D. BOUCHIER

Cross contamination of cytological smears with automated staining machines and bulk manual staining procedures O. A. N. HUSAIN, J. M. GRAINGER, AND J. SIMS

Gastric and duodenal mucosa in ‘healthy’ individuals J. KREUNING, F. T. BOSMAN, G. KUIPER, A. M. V.D. WAL, AND J. LINDEMAN

Idiopathic fibrosis of mediastinum: a discussion of three cases and review of the literature A. M. LIGHT

Dysfibrinogenaemia and liver cell growth R. D. BARR, MARY ALLARDYCE, P. W. BRUNT, AND J. L. MCPHIE

Technical method

A new automated uric acid assay A. C. PAREKH, C. SIMS, AND R. W. FONG

Letters to the Editor

Book reviews

S. Hammerberg, R. Sinai, and M. I. Marks

Serum standards for the bioassay of aminoglycosides in cerebrospinal fluid.
S Hammerberg, R Sinai and M I Marks

doi: 10.1136/jcp.31.2.172

Updated information and services can be found at:
http://jcp.bmj.com/content/31/2/172

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/