Technical methods

Anthocyanin BB: a nuclear stain substitute for haematoxylin

S. A. AL-TIKRITI and F. WALKER Department of Pathology, University of Leicester, Leicester LE1 7RH, UK

Histopathologists daily look down microscopes at sections which are usually stained with haematoxylin and eosin. These sections are taken very much for granted. Our complacency in this matter was shattered in 1973 when a world-wide shortage of haematoxylin became apparent (Lamb, 1973; Lillie, 1974). Since then, in terms of relative commodity prices, haematoxylin has shown one of the biggest increases and now costs six times more than it did in 1973. These events have prompted considerable efforts to find an effective haematoxylin substitute (Lillie et al., 1975). A fancied resemblance between haematoxylin stained fingers and blackberry stained fingers turned our attention to _Rubus fruticosus—_the common or garden blackberry.

Preliminary experiments showed that crude blackberry juice had some promise as a nuclear stain. Accordingly, a systematic study was undertaken in order to determine the optimum staining conditions and to characterise the stain.

Material and methods

PREPARATION

Garden fresh or supermarket frozen blackberries were shredded in a liquidiser and the resultant crude juice was clarified by filtration or centrifugation. It was established that ferric ions must be added for the stain to be effective, and the two best empirically devised formulae were:

(a) 100 ml clear juice
 - 1·0 g aluminium chloride
 - 1·2 ml ferric chloride solution

(b) 100 ml clear juice
 - 5·0 g sodium chloride
 - 1·2 ml 10% ferric chloride solution
 - 3·0 ml glacial acetic acid

Unlike haematoxylin, the blackberry stain does not require ‘ripening’. It is best stored at 4°C and remains active for about two months. Its optimum pH range is 2·5-4·0.

STAINING PROCEDURE

1. Bring paraffin embedded sections to water.
2. Stain with formulae (a) or (b) for 10-12 minutes.
3. Wash in running tap water for at least two minutes.
4. Stain with eosin.
5. Dehydrate, clear, and mount.

CHROMATOGRAPHY AND SPECTROPHOTOMETRY

Concentrated blackberry juice extract was subjected to ascending chromatography on Whatman No. 1 paper in butanol, acetic acid, and water (4/1/5). Cyanidin chloride (K & K Laboratories Inc, Plainview, NY, USA) was used as the reference standard.

Spectrophotometry of the extract was performed in methanol/hydrochloric acid with the later addition of aluminium chloride.

Results

The nuclei are specifically stained a dark violet blue colour distinguishable from haematoxylin staining only by the faintest of green casts (Fig. 1). The stain is equally effective on formalin, Zenker, or Carnoy fixed tissue, on decalcified material, and on frozen sections. In the last case the staining time is only one to two minutes. It can also be used with special stains such as MSB, periodic acid-Schiff, and van Gieson (Fig. 2). Sections stained with blackberry juice have been exposed to daylight for over 18 months and showed very little fading.

On paper chromatography three spots were resolved with Rf values of 43, 29, and 24. The cyanidin chloride reference standard also produced three spots, the main one corresponding closely with the Rf 29 spot of the blackberry juice extract.

Spectrophotometry of the blackberry juice gave a peak in the visible spectrum at a wavelength of 530 nm. This compares with a peak of 528 nm obtained with cyanidin chloride. With the addition of aluminium ions a bathochromic shift was demonstrated and the visible peak moved 35 nm.

Discussion

The spectrophotometric and chromatographic evi-
Technical methods

Fig. 1 Placenta stained with anthocyanin BB and E (BB and E × 220).

Fig. 2 Cervix stained with anthocyanin BB and van Gieson (BB and VG × 280).
Received for publication 27 July 1977

Measurement of plasma volume using \(^{59}\)Fe-labelled transferrin

C. Ricketts and I. Cavill, Department of Haematology, Welsh National School of Medicine, University Hospital of Wales, Cardiff, UK

The measurement of plasma volume is usually based on the dilution of an intravenously injected labelled protein. The recommended method uses radiiodinated human serum albumin (ICSH, 1973) but there are a number of occasions when other labelled proteins are being used, in particular \(^{59}\)Fe-labelled transferrin in the ferrokinetic investigation of blood disorders, which could also provide an estimate of the plasma volume. Intravascular proteins of similar size and shape would be expected to have similar distributions, and there is no a priori reason why \(^{59}\)Fe-labelled transferrin and \(^{125}\)I-labelled albumin should not give equivalent plasma volumes. However, it has been suggested that there is a difference between the two measurements (Najean et al., 1967) and that the \(^{59}\)Fe plasma volume may be unreliable (Dacie and Lewis, 1975). These observations may have been due to non-specific labelling with \(^{59}\)Fe ferric chloride (Cavill and Ricketts, 1974). We have therefore compared the dilution volumes of specifically labelled \(^{59}\)Fe transferrin and \(^{125}\)I-labelled albumin in patients with a variety of haematological disorders to see if the two are equivalent.

Subjects and methods

Fully informed consent was obtained from the 25 patients who took part in this study. One patient had haemochromatosis, one had a refractory anaemia, one had polycythaemia rubra vera, and two patients...
Anthocyanin BB: a nuclear stain substitute for haematoxylin.

S A Al-Tikritti and F Walker

doi: 10.1136/jcp.31.2.194

Updated information and services can be found at:
http://jcp.bmj.com/content/31/2/194.citation

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/