γ-Glutamyl transferase isoenzymes in human bile

P. R. WENHAM1, C. P. PRICE2, AND H. G. SAMMONS

From the Department of Clinical Chemistry, East Birmingham Hospital, Bordesley Green East, Birmingham B9 5ST, UK

SUMMARY The γ-glutamyl transferase isoenzymes of bile were studied using electrophoretic, gel filtration, and ultracentrifugation techniques. In view of the known association of other biliary enzymes with lipids the effects of butanol extraction were investigated. The results show the presence of four isoenzymes of γ-glutamyl transferase in bile, differing in electrophoretic mobilities, molecular size, and density. The correlation between the properties of biliary γ-glutamyl transferase and of alkaline phosphatase is discussed.

It has been recognised that there are several isoenzymes of γ-glutamyl transferase (γGT) (E.C. 2.3.2.2.) present in the serum, although few attempts have been made to characterise them. In contrast, little attention has been paid to the presence of γGT in the bile, and the origin of the biliary isoenzymes has not been established. A study of γGT in the bile seems worthwhile in view of the fact that the enzyme level in the serum is grossly elevated in biliary obstruction and that a study of another enzyme, alkaline phosphatase (also present in increased amounts in the circulation of patients with biliary obstruction), has shown a relationship between the isoenzymes present in the bile and those present in the serum (Price and Sammons, 1974).

The presence of γGT activity in the bile has been reported (Orlowski, 1963), with levels higher than those found in the serum. It has been supposed that biliary γGT arises from the cells of the liver and biliary tract by a process of wear and tear (Szczechlik et al., 1961; Orlowski, 1963; Rutenburg et al., 1963).

This study was undertaken in an attempt to characterise the γGT present in the bile. The techniques employed reflect experience gained in previous studies of serum and biliary enzymes.

Material and methods

Specimens of hepatic bile were obtained from patients with T-tube drainage of the common bile duct after cholecystectomy.

Agar gel electrophoresis was carried out using the Multiphor electrophoresis equipment (LKB Produkter, Bromma, Sweden). Separation employed 1% agar (Difco Noble) in barbitone buffer, pH 8.6, on rectangular glass plates, 8.4 × 9.4 cm. Electrophoresis was performed for one hour at 250 volts. A sample of pooled serum was run in parallel with bile samples and then stained for protein using naphthalene black. In this way zones of γGT activity were related to the serum protein fractions.

Polyacrylamide gel disc electrophoresis was carried out using the Shandon electrophoresis equipment and the method of Azzopardi and Jayle (1973). Before application of the sample, bromophenol blue and albumin were added to the bile in order that the mobilities of bands of enzyme activity could be related to albumin. Mobilities were expressed as a fraction of the mobility of albumin.

Using both electrophoresis procedures, the γGT isoenzymes were visualised by means of incubation with γ-L-glutamyl-α-naphthylamide, coupling the liberated α-naphthylamine with Fast Blue B according to the optimised procedure of Wenham et al. (1978). More accurate quantitation of the isoenzyme fractions after polyacrylamide gel electrophoresis was accomplished by cutting the gel into 0.5-cm segments and incubating the homogenised gel segments in buffered substrate according to the method of Rosalki et al. (1970).

Gel filtration chromatography was performed using Sephadex G200 (Pharmacia, Uppsal, Sweden) by a method previously described (Price and Sammons, 1974) using 0.02 M Tris-HCl, pH 8.0, containing 0.05 M sodium chloride. A 60 × 2 cm column was used with a flow rate of 5.2 ml buffer per hour.
This technique was complemented by buoyant density ultracentrifugation studies using a method previously described (Price and Sammons, 1974). A stepwise density gradient was formed from 10-40% (w/v) sucrose. After centrifugation for 18 hours at 36 000 rpm 15 fractions were obtained by dropwise release of the contents of the centrifuge tube. In both techniques the protein fractionation patterns were monitored using a Uvicord II absorptiometer at 280 nm. A comparison of isoenzyme characteristics was made with serum protein patterns. Enzyme activity in all fractions was determined by the method of Rosalki and Tarlow (1974).

The effect of butanol extraction on bile enzyme activity was observed by vigorously mixing equal volumes of hepatic bile and n-butanol for two minutes on a vortex mixer. The aqueous and solvent phases were then separated by centrifugation at 3000 rpm for 10 minutes in an MSE Super Minor centrifuge. The γGT activity before and after extraction was measured by the kinetic method of Rosalki and Tarlow (1974).

Results

Electrophoretic studies
In nine of the 10 samples of hepatic bile studied, three zones of enzyme activity were observed after agar gel electrophoresis. Activity was found in the (albumin-α1-), α2-, and β-globulin fractions. In the remaining sample only one fraction was observed, in the α2-globulin region. The predominant fractions were the (albumin-α1-) and α2- fractions.

Using polyacrylamide gel electrophoresis, nine of the bile samples were studied and in seven cases two bands of activity were observed with mobility 0 and 77% of albumin (Rα values of 0 and 77). One sample showed activity only at the origin, and the remaining sample showed only one band with a mobility of 77% of albumin. The predominant band in every other case was the origin fraction, and this was confirmed using the quantitative localisation technique.

Table 1 γGT activity in different fractions obtained by gel filtration and ultracentrifugation of hepatic bile expressed as a percentage of total activity recovered

<table>
<thead>
<tr>
<th>Sample</th>
<th>Gel filtration</th>
<th>Ultracentrifugation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Void volume</td>
<td>7S-4S</td>
</tr>
<tr>
<td>FS</td>
<td>100</td>
<td>72</td>
</tr>
<tr>
<td>PM</td>
<td>86</td>
<td>59</td>
</tr>
<tr>
<td>MB</td>
<td>99</td>
<td>53</td>
</tr>
<tr>
<td>CG</td>
<td>53</td>
<td>34</td>
</tr>
<tr>
<td>JB</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>MS</td>
<td>98</td>
<td>48</td>
</tr>
<tr>
<td>MD</td>
<td>100</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2 Physicochemical characteristics of the γGT isoenzymes of hepatic bile

<table>
<thead>
<tr>
<th>Isoenzyme</th>
<th>Elution from G200</th>
<th>Buoyant density ultracentrifugation</th>
<th>Electrophoretic mobility</th>
<th>Relative contribution toward total activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Void volume</td>
<td>4S</td>
<td>Agar</td>
<td>Polycrylamide</td>
</tr>
<tr>
<td>II</td>
<td>7S - 4S</td>
<td>4S</td>
<td>a1</td>
<td>++</td>
</tr>
<tr>
<td>III</td>
<td>Void volume</td>
<td>19S</td>
<td>a2</td>
<td>++++</td>
</tr>
<tr>
<td>IV</td>
<td>Void volume</td>
<td>19S</td>
<td>β</td>
<td>+</td>
</tr>
</tbody>
</table>

up to four isoenzyme fractions in hepatic bile. The numbering system adopted is given solely for convenience of discussion.

Effect of butanol on biliary γGT activity
After extraction, with butanol, of samples of hepatic
bile from nine subjects there was a mean loss of γGT activity of 59% (range 25-91%). No activity was observed in either the butanol phase or the re-suspended interface material. Sufficient material was available from five of the treated samples to allow further study of the extracted material.

Polyacrylamide gel electrophoresis of the aqueous phase resulted in a decrease in the fraction previously found at the origin with the appearance of a fraction with a mobility of 55% that of albumin. This was quite clearly shown using the quantitative localisation technique, in which 79% of the origin activity was lost with the appearance of a new isoenzyme with 72% of the total activity (Fig. 1). The overall loss of activity of this sample was 25%.

![Fig. 1](image)

Fig. 1 Quantitative localisation of γGT isoenzymes after polyacrylamide gel electrophoresis of hepatic bile before and after butanol extraction:
(a) protein pattern; (b) enzyme activity expressed as absorbance at 405 nm —— before butanol ——— after butanol.

Gel filtration of hepatic bile after extraction with n-butanol showed a loss of activity in the 19S fraction with the appearance of a new peak of activity between the 19S and 7S protein fractions. The small 7S-4S peak of activity was unaltered by the solvent extraction (Fig. 2). Concentration of the new fraction of activity and electrophoresis in polyacrylamide gel revealed a mobility 55% that of albumin; in agar gel its electrophoretic mobility was similar to that of the α1-globulins.

Ultracentrifugation of three samples of bile after butanol extraction showed a loss of activity in the 19S fraction with the appearance of more activity in the 4S fraction (Fig. 3). Electrophoresis, in polyacrylamide gel, of the increased 4S fraction after butanol showed a loss of activity at the origin and the appearance of a fraction with a mobility 55% that of albumin.

The results of this study show that on extracting bile with butanol an isoenzyme present in the bile is transformed into an isoenzyme not previously observed.

Discussion

Although the presence of γGT in the bile has been known for some years, much uncertainty exists as to its origin. Since biliary obstruction often produces the largest increases in serum γGT activity (Szczeklik et al., 1961; Rutenberg et al., 1963; Łukasik and
According to Richterich (1965) and Whitfield et al. (1972), it is generally believed that the biliary enzyme is hepatic in origin. However, Kryszewski et al. (1973) studied the effects of bile duct ligation, considering the possibility of the bile being an excretory route for \(\gamma \)-GT produced from non-hepatic sources.

In the present study, the \(\gamma \)-GT activity of the bile has been shown to be heterogeneous and consists of four isoenzyme fractions (Table 2). The study has involved the use of several protein fractionation techniques depicting various physical characteristics of protein molecules. Previous workers have described various numbers of isoenzymes which can in part be explained by the use of fewer separation techniques than what we have used, although this does not settle all the controversy.

Hetland et al. (1975) at the University of Minnesota, were able to detect only one band of enzyme activity after agarose gel electrophoresis of hepatic bile; however, this conclusion is not uniform, as noted by Kuska (1965), who could demonstrate \(\gamma \)-GT activity in all of the protein fractions after paper electrophoresis of hepatic bile. In the presence of heterogeneity of enzyme activity, it is quite common to relate isoenzyme activity to some characteristic physical feature, for example, electrophoretic mobility, molecular size, or density. In the case of biliary \(\gamma \)-GT, however, no one physical separation technique merits choice as the basic fractionation technique, and consequently the isoenzymes are numbered somewhat arbitrarily and their properties are described in Table 2. The enzymes I and III contribute equally towards the majority of the biliary \(\gamma \)-GT activity. In the case of biliary \(\gamma \)-GT isoenzymes, it is interesting to note that no single fractionation technique demonstrates the full heterogeneity of the enzyme activity.

It has been shown by gel filtration that three of the isoenzymes (I, III, and IV) are of large molecular size; furthermore, they are excluded from a 7% polyacrylamide gel. Of the predominant two isoenzymes, ultracentrifugation studies suggest that isoenzyme III is a high molecular weight protein but isoenzyme I, while having a large molecular size, is less dense than isoenzyme III.

There are several possible explanations for the existence of isoenzymes, and in this context it is now well established that enzymes may be attached to lipid or lipoprotein components (Moss, 1962; Dunne et al., 1967; Jennings et al., 1970). Such an association has been demonstrated for biliary alkaline phosphatase (Price et al., 1972); in this study of biliary alkaline phosphatase the effect of butanol extraction was to produce another isoenzyme with lower molecular weight and altered electrophoretic mobility, resulting from the removal of a phospholipid moiety from the biliary isoenzyme. Treatment of the biliary \(\gamma \)-GT with \(n \)-butanol led to a loss of activity, varying between 25 and 90%. This loss of activity may be due to the removal of an essential lipid component or rearrangement of the enzyme molecule on the loss of a lipid component. The loss of activity was accompanied by a change in physicochemical properties of the isoenzyme I, producing a smaller molecule, which migrated into the polyacrylamide gel on electrophoresis as in the case of alkaline phosphatase. In a subsequent study of \(\gamma \)-GT isoenzymes in serum of patients with biliary obstruction, it was noted that an isoenzyme band similar to this fraction (obtained by butanol extraction of biliary \(\gamma \)-GT) was present.

While there are similarities in the behaviour of biliary \(\gamma \)-GT isoenzyme I and biliary alkaline phosphatase on extraction with \(n \)-butanol, it is unlikely that the two enzyme molecules are derived from a singular complex as the extracted isoenzymes differ in their properties. After extraction with \(n \)-butanol \(\gamma \)-GT appears as a 4S protein, while alkaline phosphatase is a 7S protein. Furthermore, the biliary isoenzymes themselves are not identical, demonstrating different buoyant density ultracentrifugation characteristics, alkaline phosphatase being more dense than \(\gamma \)-GT isoenzyme I.

There is a second major \(\gamma \)-GT isoenzyme in bile which has the characteristics of a high molecular weight protein. Further work is required to determine the detailed nature and origin of this fraction, and the possibility that it represents an isoenzyme bound to a fragment of membrane must be considered. It has recently been shown that some biliary enzymes may be associated with membranous vesicles, and this may be the situation as far as high molecular weight biliary \(\gamma \)-GT is concerned (De Broe et al., 1975).

The results of this study show a certain degree of similarity in physicochemical properties between biliary \(\gamma \)-GT and alkaline phosphatase; however, there are also important differences. It remains for these observations on the \(\gamma \)-GT isoenzymes of bile to be related to isoenzymes present in the liver and in the serum of patients with biliary obstruction. This information may then lead to a better understanding of the mechanisms involved in the increased \(\gamma \)-GT activity in the serum of patients with liver disease.

References

P. R. Wenham, C. P. Price, and H. G. Sammons

Separation of alkaline phosphatase isoenzymes in human serum using gel-filtration (Sephadex G-200) techniques. *Cancer*, 20, 71-76.

Requests for reprints to: P. R. Wenham, Department of Clinical Chemistry, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
gamma-Glutamyl transferase isoenzymes in human bile.

P R Wenham, C P Price and H G Sammons

doi: 10.1136/jcp.31.7.666

Updated information and services can be found at:
http://jcp.bmj.com/content/31/7/666

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/