Use of pyruvate fermentation compared with tetrazolium reduction in the differentiation of group D streptococci

SHEENA A. WAITKINS

From the Cross Infection Reference Laboratory, Central Public Health Laboratory, Colindale Avenue, London NW9 6HT

SUMMARY The reduction of 2, 3, 5 triphenyltetrazolium chloride in the original medium of Barnes (Journal of General Microbiology, 14, 57, 1956), and in a modified medium, was compared with the ability to ferment pyruvate as a means of separating Streptococcus faecalis from all other group D streptococci. The tetrazolium reduction test gave an occasional negative reaction with Str. faecalis strains. In addition, a number of strains gave a weakly positive reaction in the test, as did some strains of Str. faecium and Str. bovis. With some batches of tetrazolium, these weak reactions with Str. faecalis were so frequent that interpretation of the results was difficult. On the other hand, all Str. faecalis strains, and no other group D streptococci, gave a positive pyruvate-fermentation reaction in 48 hours.

Barnes (1956) showed that Streptococcus faecalis could be distinguished from other group D streptococci by its ability to reduce tetrazolium (2, 3, 5 triphenyltetrazolium chloride) to formazan on a glucose-containing agar medium with an initial pH of 6·0. On this medium it forms colonies that have a distinctive red, metallic sheen and are easily distinguished from the colourless colonies of Str. faecium and other group D streptococci. It was noted in the laboratory (L. C. Ball, personal communication, 1976) that Barnes' medium failed to support the growth of some strains of Str. bovis. The medium was, therefore, modified slightly by substituting Hedley Wright agar (Cowan, 1974) for infusion agar; this gave satisfactory growth of all the group D streptococci tested. Unfortunately batches of tetrazolium varied considerably in their ability to be reduced by Str. faecalis, and some strains of Str. faecium and Str. bovis gave a 'pink-red' coloration of their colonies. These factors tended to make the tetrazolium medium unsatisfactory for distinguishing Str. faecalis from other group D streptococci, the main consideration when dealing with clinical material from human sources.

In 1975, Gross et al, proposed a test for the fermentation of pyruvate as a means of distinguishing Str. faecalis from both Str. faecium and Str. bovis. The pyruvate-fermentation test was therefore compared with tetrazolium reduction as a means of distinguishing Str. faecalis from other group D streptococci.

Media

HORSE BLOOD AGAR
A layer of Hartley digest agar containing defibrinated horse blood 5% v/v (Oxoid) was poured over a layer of peptone-water agar (Cowan, 1974).

TODD-HEWITT BROTH
This was prepared as described by Cowan (1974).

INFUSION AGAR, pH 6·0
0·455 kg of minced fat-free meat; M Peptone No. 1 (Lab. M), 10 g; sodium chloride, 5·0 g; Davies agar, 10 g; and 1 litre of cold tap water.

Minced fat-free meat was placed in the water to infuse overnight; the next morning the rest of the ingredients were added, and the mixture was boiled for 30 minutes, then filtered to remove the meat, which was discarded. The pH was adjusted to 6·0 and the medium was autoclaved for 20 minutes at 115°C.

TETRAZOLIUM MEDIUM (Barnes, 1956)
This was infusion agar, pH 6·0, with the addition of
glucose 1% w/v and 2, 3, 5 triphenyltetrazolium chloride 0·02% w/v (Koch-Light Laboratories, Ltd).

Five batches of tetrazolium, nos. 40761, 44448, 55750, 69128, and 72919, were used.

HEDLEY WRIGHT AGAR. pH 6·0

This was prepared as described by Cowan (1974); the final pH was adjusted to 6·0.

MODIFIED BARNES' TETRAZOLIUM MEDIUM

This was Hedley Wright agar, pH 6·0, with the addition of glucose 1% w/v and 2, 3, 5 triphenyl-tetrazolium chloride.

PYRUVATE MEDIUM

This contained Difco Tryptone, 10 g; Difco Yeast Extract, 5 g; potassium dihydrogen phosphate, 5 g; sodium chloride, 5 g; sodium pyruvate, 10 g; bromothymol blue, 0·04 g, and Davis Agar, 10 g; distilled water, 1 litre.

This mixture was boiled for 5 minutes to dissolve the constituents completely, and the pH was adjusted to 7·2-7·4. The medium was dispensed and bottled into 100 ml amounts, and sterilised by autoclaving at 120°C for 15 minutes. When plates were required, the bottled medium was melted and poured; these poured plates could be stored at 4°C for at least four weeks. The medium was blue-green in colour.

Cultures

The group D streptococcal strains examined were: (1) from the National Collection of Type Cultures: *Str. faecalis*, nos. 2705, 5957, and 775; *Str. faecium*, nos. 7171, 7176, 7182, 7379, 7380, and 7174; *Str. durans*, nos. 8129, 8130, 8174, and 8307; *Str. bovis*, no. 8140; and (2) a collection of 99 strains of *Str. faecalis*, 26 strains of *Str. faecium*, 1 strain of *Str. durans*, and 20 strains of *Str. bovis* received for identification in the laboratory and tested by the methods described by Parker and Ball (1976).

Methods

CULTIVATION OF TEST ORGANISMS

Both routine and NCTC strains were plated for purity on horse-blood agar and incubated overnight at 37°C in an atmosphere of 5% CO₂. A well isolated colony was subcultured into 10 ml of Todd-Hewitt broth, which was incubated overnight at 37°C in 5% CO₂. Next morning a drop of turbid broth was dropped on to freshly poured pyruvate and tetrazolium plates, which were incubated aerobically at 37°C for two days. Controls were included: *Str. faecalis* no. NCTC2705, which gave strongly positive results in both tests, and *Str. faecium* no. NCTC7171, which gave negative results in both tests.

RECORDING OF RESULTS

Reduction of tetrazolium was graded as follows:

- + + + indicated the classical appearance of red colonies with a metallic sheen;
- + +, deep pink colonies without the metallic sheen;
- +, faintly pink colonies; and
- -, no coloration of the colonies.

In the pyruvate-fermentation test a bright yellow coloration of the colonies and surrounding medium indicated acidification and was a positive result; no change in colour was a negative result. Weak reactions after 48 hours never occurred.

Results

Table 1 illustrates the variation of tetrazolium reduction by 102 strains of *Str. faecalis* (all of which survived 60°C for 30 minutes, failed to acidify arabinose, and possessed Lancefield group D antigen) with different batches of the chemical. It also compares the effect of different basal media, both Barnes' and the modified Hedley Wright agar, on the action of tetrazolium. In this series of tests the intensity of reduction was in general greater on the modified medium than on the original medium, but the latter gave slightly fewer completely negative 'false' reactions. The performance of both media was greatly influenced by the batch of 2, 3, 5 triphenyl-tetrazolium chloride used. For example, in the modified media, batch no. 69128 gave good reduction with 90/102 *Str. faecalis* strains, and a further eight might have been accepted as giving a positive reaction (+ +); only four of 102 organisms tested gave very feeble reactions (+) that were potentially misleading, and none gave completely negative reactions. On the other hand, batch no. 72919 performed very poorly in both types of media and would have led to a great deal of difficulty in the interpretation of the results by inexperienced observers. Less than one-third of all the cultures gave strongly positive results (+ + +) and nearly one-quarter gave equivocal results (+). The other batches of tetrazolium tested, nos. 40761, 44448, and 55750, all performed moderately well, but a number of *Str. faecalis* strains gave equivocal or 'false' negative results on both types of medium.

Table 2 presents the frequency with which group D streptococci gave positive reactions of any strength from + to ++ +. The strains tested were representative of the more commonly isolated species: *Str. faecalis*, *Str. bovis* biotype I (see Parker and Ball, 1976), *Str. faecium*, and *Str. durans*. Two
Table 1 Variation of tetrazolium reduction by Str. faecalis with different batches of 2, 3, 5 triphenyltetrazolium chloride in modified Barnes' medium (MBM) and original Barnes' medium (BM)

<table>
<thead>
<tr>
<th>Degree of reduction</th>
<th>Number of cultures (of 102 tested) that gave the indicated degree of reduction on medium containing tetrazolium batch number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40761 MBM</td>
</tr>
<tr>
<td>++</td>
<td>68</td>
</tr>
<tr>
<td>+</td>
<td>19</td>
</tr>
<tr>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>++ +</td>
<td></td>
</tr>
<tr>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

+ + + red colonies with metallic sheen
++ deep pink colonies
+ faintly rose-pink colonies
- no pink or red coloration

MBM = modified Barnes' medium
BM = original Barnes' medium (see text)

Table 2 Frequency of positive tetrazolium reduction tests (of any strength from + to +++) and of positive pyruvate-fermentation tests given by strains of various group D streptococci

<table>
<thead>
<tr>
<th>Streptococcus</th>
<th>No. of cultures tested</th>
<th>Number of cultures of the indicated streptococci that gave a positive reaction on medium containing:</th>
<th>Number of cultures fermenting pyruvate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tetrazolium, batch no.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40761 MBM</td>
<td>B</td>
</tr>
<tr>
<td>faecalis</td>
<td>102</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>faecium</td>
<td>30</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>bovis biotype</td>
<td>21</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>durans</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

strains of Str. faecium (no. NCTC7182 and one routine isolate) and one of Str. bovis biotype I gave 'false' positive reactions indicated by pink or red colonies. Indeed, Str. faecium no. NCTC7182 gave a ++ reaction and would certainly have been misclassified as a Str. faecalis if tetrazolium reduction had been used as the identification criterion.

The variation of the basal medium had little effect on the frequency of 'false' positives. On the other hand, all Str. faecalis strains and none of other group D streptococci tested gave a positive pyruvate-fermentation test.

Discussion

The group D streptococci of importance in medical microbiology are Str. faecalis and Str. bovis. These are unlikely to be confused, because Str. bovis usually forms minute colonies and is highly sensitive to benzyl penicillin in a disc-diffusion test. The main problem, therefore, is to separate Str. faecalis from the rest of the enterococci (especially Str. faecium and Str. durans), and the tellurite resistance or the tetrazolium reduction tests are usually used for this purpose in the routine laboratory. In our earlier experience, the latter gave a more clear-cut differentiation than the former, and this test plus the acidification of arabinose, melibiose, and melezitose greatly facilitated presumptive identification of these group D streptococci. However, we were from time to time troubled by batches of 2, 3, 5 triphenyltetrazolium chloride that gave a number of feeble or even negative reactions with strains of streptococci that appeared to be in every respect true Str. faecalis.

Gross et al. (1975) proposed an alternative reaction which utilised the ability of Str. faecalis to ferment pyruvate. These authors found that this metabolic ability was exclusive to Str. faecalis among the group D streptococci. They did observe, however, that some strains of Str. avium gave a feeble positive reaction after 72 hours, but these same strains were negative if incubation was for only 48 hours. They did not test any group D streptococci that gave equivocal results with tetrazolium reduction, but in this study I included a number of 'problem' strains. From the results presented I conclude that pyruvate-fermentation is an excellent key test to use in the differentiation of Str. faecalis from other group D streptococci.
References

Requests for reprints to: Dr Sheena A. Waitkins, Public Health Laboratory, Fazakerley Hospital, Lower Lane, Liverpool L9 7AL.

The June 1978 Issue

THE JUNE 1978 ISSUE CONTAINS THE FOLLOWING PAPERS

Enzyme immunoassays with special reference to ELISA techniques A. Vollcr, A. Bartlett, and D. E. Bidwell

Evaluation of the single radial haemolysis (SRH) technique for rubella antibody measurement S. M. Russell, Sandra R. Benjamin, Moya Briggs, Mary Jenkins, P. P. Mortimer, and Sheila B. Payne

Measurement of total haemolytic complement activity in body fluids W. M. Strong, D. J. Lea, and D. J. Ward

Determination of antibiotic sensitivities by the Sensititre system Ian Phillips, Christine Warren, and Pamela M. Waterworth

An assessment of the Sensititre method for determining minimum inhibitory and bactericidal concentrations Angela H. Pyckett

Phagocytosis and killing of staphylococci by human polymorphonuclear and mononuclear leucocytes H. A. Verbrugh, R. Peters, P. K. Peterson, and J. Verhoef

Serum immunoglobulin concentrations before and after splenectomy in patients with homozygous β-thalassaemia M. Constantoulakis, D. Trichopoulos, O. Avgoustaki, and J. Economidou

A case of Lennert's lymphoma J. B. MacGillivray and W. G. Macintosh

Overlap in the spectrum of non-specific inflammatory bowel disease—'colitis indeterminate' Ashley B. Price

Ontogeny of actin and microsomal antigens in gastric parietal cells R. Ceredig and B. H. Toh

Use of a mucolytic agent (Cytoclair) in the preparation of cell material for the detection of malignant cells in sputum J. M. Grainger and O. A. N. Husain

Ectopic ACTH syndrome: clinicopathological correlations W. Singer, K. Kovacs, N. Ryan, and E. Horvath

A case of type III hyperlipoproteinaemia studied by acrylamide gel gradient electrophoresis M. Y. Chew, J. M. Gutman, and J. Green

Technical method

Rapid acetoacetate analysis on the LKB 8600 Reaction Rate Analyser D. F. Davidson

Book reviews

Copies are still available and may be obtained from the PUBLISHING MANAGER, BRITISH MEDICAL ASSOCIATION, TAVISTOCK SQUARE, LONDON WC1H 9JR, price £3.00, including postage.
Use of pyruvate fermentation compared with tetrazolium reduction in the differentiation of group D streptococci.

S A Waitkins

doi: 10.1136/jcp.31.7.692