Culture diagnosis of meningococcal carriers

Yield from different sites and influence of storage in transport medium

PER OLCÉN, JAN KJELLANDER, DAN DANIELSSON, AND BO L. LINDQUIST

From the Department of Clinical Microbiology, Infectious Diseases and Paediatrics, Central County Hospital, Örebro, Sweden

SUMMARY Different specimens and techniques have been used in the diagnosis of carriers of Neisseria meningitidis, reflecting the uncertainty about the optimal diagnostic procedure. In the present investigation the culture yield of meningococci from throat specimens was compared to that from nasopharyngeal specimens in 178 persons: 44 carriers were diagnosed. All of them were detected by culture of throat specimens while 34% of them would have remained undiagnosed if only nasopharyngeal specimens had been examined. Storage of throat specimens in a transport medium for 24 hours before culture gave a negative culture for meningococci in 41% of the carriers. This loss was surprisingly high, the reasons for which are discussed.

The diagnosis of meningococcal carriers is of interest in, for example, epidemiological investigations of meningococcal disease. The general routine in the search for meningococcal carriers has been culture of nasopharyngeal specimens in order to avoid overgrowth and other interactions of the normal flora in the tonsillo- oropharyngeal area. Since the introduction of selective culture medium for pathogenic Neisseria (Thayer and Martin, 1964; Martin et al., 1965) no investigations have compared the yields by culturing nasopharyngeal and throat specimens with the use of such media. Due to this lack of information, it is far from clear which location will give the highest yield. Also, the transport of specimens to the laboratory, in currently used transportation media, before they are cultured, will influence the results. Thus, Holten et al. (1978) mentioned a loss of at least 10% after transport as compared to direct inoculation ('at the bedside').

The present study was undertaken to compare the culture yields of meningococci from nasopharyngeal and throat specimens inoculated 'at the bedside'. The culture yield of meningococci after storage of clinical specimens in modified Stuart transport medium (Stuart, 1946; Gästrin et al., 1968) was also investigated as well as the survival of meningococcal organisms in the same transport medium in a laboratory study.

Material and methods

DESIGN OF CLINICAL STUDY

The study was carried out during the period July 1975 to May 1978 in Örebro County, Sweden, and comprised 178 persons. These included 64 family members of 23 consecutive patients with meningococcal disease, 64 family members of 24 consecutive patients with meningitis due to Haemophilus influenzae or Streptococcus pneumoniae, and 50 healthy military service men.

Three specimens were taken from each person by one of us according to the following procedure: (1) throat swab taken from both tonsils with a dry cotton-tipped wooden applicator. The specimen was immediately inoculated onto culture plates (see below); (2) throat swab taken from both tonsils with a dry charcoaled cotton-tipped wooden applicator and put into Transport Medium SBL (TMSBL) (Gästrin et al., 1968). This specimen was inoculated onto plates after 24 hours' storage at room temperature; (3) nasopharyngeal swab taken via the transnasal route with a dry cotton-tipped wire applicator. The applicator was held for a few seconds towards the posterior wall of the nasopharynx, rotated in both directions, and then withdrawn and immediately inoculated onto plates.

Received for publication 11 June 1979
BACTERIOLOGICAL AND SEROLOGICAL METHODS
The specimens were cultured on a medium prepared from BB1 GC agar base enriched with Isovitalex and Bacto Haemoglobin with and without VCN (vancomycin, colistin, nystatin) inhibitor as described before (Danielsson and Johannisson, 1973). The plates were incubated in high humidity 5% CO₂ at 36°C within 30 minutes after inoculation and read after two days. Diagnosis and serogrouping of meningococci was performed as described by Olcén et al. (1978) with sugar degradation tests, ONPG, immunofluorescence, and co-agglutination.

DESIGN OF LABORATORY STUDY CONCERNING SURVIVAL OF MENINGOCOCCI IN TRANSPORT MEDIUM
Altogether three strains of meningococci group A, three of group B, and three of group C were examined. One international reference strain (group A NCTC No. 10025, batch 7; group B NCTC No. 10026, batch 3; group C NCTC No. 8554, batch 3), one strain freshly isolated from cerebrospinal fluid, and one freshly isolated from the throat were examined within each group.

The strains had been preserved at −63°C (Danielsson and Sandström, 1979) and were subcultured three to four times on the solid culture medium described by Kellogg et al. (1963). After 18 hours’ growth the culture was harvested in phosphate buffered saline with 5% heat-inactivated (56°C, 30 min) horse serum to a turbidity corresponding to about 9 × 10⁸ CFU/ml; 0-1 ml of this suspension was pipetted to each of 14 dry charcoaled cotton-tipped applicators (identical with those used in the clinical study). Twelve of the applicators were transferred to TMSBL while two were vigorously shaken for 30 seconds in 3 ml of dextrose-broth using a rotatory shaker. A series of 10-fold dilutions in dextrose-broth were prepared from the suspension, and 0-1 ml of each dilution was inoculated onto enriched GC agar base with and without VCN and incubated for 48 hours. The number of colonies was counted in those plates which showed growth of 30 to 300 colonies, and the viable count per applicator was calculated. The applicators stored in TMSBL were withdrawn in pairs and treated in the same way after storage for 1 minute, 4, 8, 24, 48, and 72 hours. In some experiments other times for storage were used, as indicated below.

RESULTS

ISOLATION OF MENINGOCOCCI FROM THROAT AND NASOPHARYNGEAL SPECIMENS
The results are summarised in the Table. It can be seen from the Table that 44 of the 178 persons carried meningococci and that all the carriers had positive throat cultures while only 57% (25 persons) had positive nasopharyngeal cultures. If only the clinically important serogroups A, B, C, and Y are considered the corresponding nasopharyngeal isolation rate was 66%. The Table also shows that the culture yield from the throat was higher than from the nasopharynx for all serogroups except the three group A strains which were isolated from both sites.

SURVIVAL OF MENINGOCOCCI IN TMSBL

CIsical study
From the Table it can be seen that there was a total loss of 41% (18 out of 44 meningococcal carriers) after storage of the throat specimens for 24 hours in TMSBL. The same percentage was lost if only the serogroups A, B, C, and Y are considered.

Laboratory study
Nine meningococcal strains were examined for survival in TMSBL. The recovery from applicators that had not been inserted in TMSBL varied from 2·7 × 10⁷ to 8·7 × 10⁷ (mean 5·8 × 10⁷) CFU/applicator. The recovery from applicators that had been inserted in TMSBL and withdrawn after 1 minute was 1·6 × 10⁷ to 5·8 × 10⁷ (mean 3·6 × 10⁷) CFU/applicator lower than the uninserted ones. This means that 62% of the bacteria remained in the transport medium after withdrawal of the applicator. The changes in viable counts after different storage times in TMSBL for the nine strains are illustrated in Figure 1. It can be seen from the Figure that a continuous loss of viable bacteria was registered over time. The average loss by 24 hours was 1·3 log. If the mechanical effect of insertion and withdrawal of the applicator (including storage for 1 minute) is added the total average loss will be 1·8 log. It can

<table>
<thead>
<tr>
<th>MC serogroup</th>
<th>Total no.</th>
<th>No. of specimens with MC Th</th>
<th>Th</th>
<th>Np</th>
<th>ThStu</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>11</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>14</td>
<td>11</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>44</td>
<td>25</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

Th = throat culture, direct inoculation;
Np = nasopharyngeal culture, direct inoculation;
ThStu = throat culture stored in transport medium for 24 hours before culture.
also be seen that the reduction was more marked at the beginning. The results illustrated in Fig. 1 are based on colony counts on GC agar without inhibitor. The corresponding counts on GC agar with VCN inhibitor were no more than 0-2 log lower.

Figure 2 shows that the reduction of colony counts increased with decreasing inoculum. This was especially pronounced at the beginning. At an inoculum of 4×10^7 CFU/applicator the loss after 6 hours was 0-7 log whereas the corresponding loss at an inoculum of 5×10^4 CFU/applicator was 3-8 log.

Discussion

Since the introduction of selective culture media for pathogenic Neisseria (Thayer and Martin, 1964; Martin et al., 1965), surprisingly few data have been published concerning the site of meningococci in carriers. For a long time, culture of nasopharyngeal specimens has been the routine. If the approach to the nasopharynx was transoral it was recommended that the oropharyngeal structures should not be touched in order to avoid the normal flora in these areas (Slaterus et al., 1963). In several investigations during recent years various techniques have been used, reflecting the lack of information concerning the site of meningococci in carriers (Fraser et al., 1973; Jacobson et al., 1977; Holten et al., 1978; Sivonen et al., 1978). In the present study all meningococcal carriers were diagnosed by culture of throat specimens while 34% of them were not diagnosed by culture of nasopharyngeal specimens taken transnasally.

Hoeffler (1974) reported a higher yield with nasopharyngeal specimens taken transorally as compared to those taken transnasally. He did not, however, compare these results with cultures from the throat. Hoeffler's results could be explained by contamination of the applicator swabs with secretions from the oropharyngeal structures, which are difficult to avoid in order to reach the nasopharyngeal area. In the present study transoral nasopharyngeal specimens were not taken since many of the subjects were small children in whom this technique is technically difficult to carry out.

Inoculation of specimens 'at the bedside' gave the highest yield, which is in agreement with the report by Holten et al. (1978). We noted a loss of as much as 41% by storage of throat specimens in TMSBL for 24 hours at room temperature, while Holten et al. (1978) reported a loss of 10% after transport in a corresponding transport medium. The reason for the higher loss in our investigation is not clear. However, Holten et al. (1978) examined a semi-closed population which had a higher carrier rate than our groups and perhaps a heavier colonisation of meningococci.

Our laboratory experiments showed an average loss of $1-8 \times 10^{10}$ log during storage for 24 hours,
which is in agreement with the results reported by Gästrin et al. (1968). We found, however, losses of more than $2 \times 10^9 \log$ in experiments with lower viable counts of meningococcal organisms. We did not quantitate the number of meningococcal organisms collected by an applicator from a carrier, but our experiments indicate that in many cases the number of meningococcal organisms per applicator was lower than $10^7 - 10^8$, an inoculum commonly used in in vitro tests.

Our findings stress the need for testing transport media by laboratory experiments using a wide range of bacterial concentrations as well as field studies such as those in this report or those described by others (Danielsson and Johannisson, 1973; Danielsson et al., 1978).

References

Requests for reprints to: Dr Per Olcén, Department of Clinical Microbiology, Central County Hospital, S-701 85 Örebro, Sweden.
Culture diagnosis of meningococcal carriers: yield from different sites and influence of storage in transport medium.

P Olcén, J Kjellander, D Danielsson and B L Lindquist

J Clin Pathol 1979 32: 1222-1225
doi: 10.1136/jcp.32.12.1222

Updated information and services can be found at:
http://jcp.bmj.com/content/32/12/1222

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/