The combined use of anaerobic culture with added carbon dioxide and the rapid confirmation by plate bile solubility test enabled clearcut results to be obtained even in the mixed flora from respiratory specimens. The method thus saves the time required to obtain pure cultures.

The test is simple to perform, gives rapid results, compares well with the standard identification methods, and is therefore recommended as a routine screening procedure for the diagnostic laboratory.

References

Requests for reprints to: R. Howden, Bacteriology Department, Children's Hospital, Western Bank, Sheffield S10 2TR, UK.

Plastic embedding of transbronchial biopsy specimens for light microscopy

C. W. Edwards, Anna Krypczyk, and A. Brownhill
Department of Histopathology, East Birmingham Hospital, Bordesley Green East, Birmingham B9 5ST, UK

Transbronchial biopsies are increasingly used in the investigation of pulmonary disease, but the interpretation of conventional paraffin sections of such material can be difficult. The specimens are small and consist of several fragments, each 2 mm or less in diameter. Air spaces are often torn, distorted, or collapsed. Furthermore, because of the limitations of paraffin wax as an embedding medium, finer details are obscured by the thickness of the section and shrinkage artefact.

In recent years it has been shown that, if tissue is embedded in synthetic resins, shrinkage artefact is minimised and sections 1 μm or less in thickness are easily obtained (Green, 1970; Burns, 1973; Lee, 1977; Philpotts, 1977). It is thus possible to prepare sections that provide a simple and useful intermediate step between light and electron microscopy. Histological preparations of this type are now used routinely in many centres, particularly in the diagnosis of lymphoreticular and glomerular disease. However, they have not previously been applied to the study of pathological processes in the lung.

This paper deals with two methods for embedding transbronchial biopsy material, which we have been evaluating in our laboratory: the first uses hydroxyethyl methacrylate, and the second an epoxy resin first described by Spurr in 1969. Both these techniques are applicable to larger biopsies or postmortal material with appropriate minor modifications.

Material and methods

It must be emphasised that many of the reagents used in the two techniques described below are toxic, carcinogenic, explosive, or inflammable. They must be handled with extreme care, and a fume cupboard is mandatory. All the materials mentioned below are available from BDH Chemicals Ltd, Poole, or from TAAB Laboratories, Emmer Green, Reading.

Received for publication 4 June 1979
Technical methods

THE 2-HYDROXYETHYL METHACRYLATE
TECHNIQUE

Monomer: 2-hydroxyethyl methacrylate 400 ml
stabilised with 1200 ppm
hydroxyquinone
2-butoxyethanol 40 ml
Benzoyl peroxide 7.5 g
Promoter: Polyethylene glycol 400
N-N-dimethylaniline 1.0 ml
Embedding mixture:
Monomer 10 ml
Promoter 0.25 ml

Processing
(1) 10% buffered formalin: 24 hours
(2) 70% alcohol: 1 hour
(3) Four changes of 100% alcohol: 1 hour each
(4) Three changes of monomer: 1 hour each
(5) Monomer: overnight.

Embedding
The specially shaped blocks (Fig. 1) consist of a
wedge-shaped upper part containing the specimen
and a rectangular lower part which is held in the
microtome chuck. The lower part is 3.5 x 2.5 cm,
and the total thickness is 1 cm. They are cast in
silicone rubber moulds which are prepared using a
male model of paraffin wax.

Fig. 1 The shape of the blocks used in the methacrylate
technique. The specimen(s) is embedded towards the
rear of the upper part.

The embedding mixture is made up immediately
before use in a universal container, and the specimen
is added and gently shaken. The embedding mixture
and the specimen are then transferred to the mould,
care being taken to position the specimen correctly.
Heat is generated during polymerisation, so the
mould should be partially immersed in a water bath,
taking care not to wet the embedding medium.
Sections may be cut within 1 hour, but it is better to
leave the blocks overnight.

Section cutting
Sections are cut with a steel knife on a base sledge
microtome set at 1 or 2 µm. The blocks are set in the
chuck so that the apex of the wedge-shaped upper
part leads. Sections are floated out on cold water,
collected on albuminised slides, and dried at 60°C.

THE SPURR RESIN TECHNIQUE

Monomer: Vinylcyclohexane dioxide 39 ml
Diglycyl ether of poly-
propylene glycol
Nonenyl succinic anhydride 104 ml
Dimethylaminoethanol 2.6 ml

The monomer may be stored in glass bottles at
−20°C. No separate promoter is used in this
technique.

Processing
(1) 10% buffered formalin: 24 hours
(2) 50% alcohol: 15 minutes
(3) 70% alcohol: 15 minutes
(4) 95% alcohol: 15 minutes
(5) Three changes of 100% alcohol: 30 minutes each
(6) Three changes of propylene oxide: 30 minutes
each
(7) Equal parts of propylene oxide and resin: 1 to 2
hours
(8) Spurr resin: 1 to 2 hours
(9) Spurr resin: overnight.

In our laboratory the processing is carried out in a
Reichert EM tissue processor.

Embedding
The blocks are larger than those used for electron
microscopy and measure 1 x 1 x 2 cm. They are
cast in specially prepared silicone rubber coffin
moulds. The specimen is held in the appropriate
position, and resin is carefully run in with a Pasteur
pipette. The mould is then heated to 60°C in an
oven for 4-24 hours.

Section cutting
A standard microtome with a steel knife will not cut
satisfactory sections of material embedded in Spurr
resin. Therefore, in our laboratory, we use a glass
knife in a Reichert OMU 3 Ultramicrotome set at
1 or 2 µm. The sections are transferred to a drop of
water on a microscope slide. The slide is placed on a
hotplate at 85°C to expand the section. Excess water
is removed, and the slides are left on the hotplate so
that the sections adhere securely.

STAINING
Haematoxylin and eosin (H and E), elastic van
Gieson (EVG), and periodic acid-silver (PAAg) are
routinely used in each case. Periodic acid-Schiff (PAS) is used when fungal infections or alveolar proteinosis is suspected.

Before staining, Spurr resin must be removed from the sections by a 2-minute application of a solution containing 10 ml 74 OP alcohol, 10 ml propylene oxide, and 10 pellets sodium hydroxide. This is not necessary, or indeed possible, in the case of methacrylate-embedded material.

Haematoxylin and eosin

1. Methacrylate sections:
 - Celestine blue: 10 minutes
 - Harris’s haematoxylin: 10 minutes
2. Spurr sections:
 - Harris’s haematoxylin: 5-10 minutes
3. Differentiate in 1% acid alcohol
4. Blue in tap water
5. 1% eosin in 1% calcium chloride: 10 minutes
6. Adjust colour balance in water.

Elastic van Gieson

1. 0.5% potassium permanganate: 5 minutes
2. Bleach in 1% oxalic acid: 2 minutes
3. Rinse in 70% alcohol
4. Methacrylate sections:
 - Miller’s elastic stain: overnight
5. Spurr sections:
 - Miller’s elastic stain: 4 hours
6. Rinse in absolute alcohol
7. Rinse in water
8. Slidder’s van Gieson counterstain: 2-3 minutes

Periodic acid-silver (modified after Gomori (1952))

Stock solution:

- 3% hexamine: 200 ml
- 5% silver nitrate: 10 ml
- Store at 4°C

Staining solution:
- Stock solution: 20 ml
- Distilled water: 20 ml
- 5% borax solution: 1.75 ml

1. 1% periodic acid: 45 minutes
2. Rinse in distilled water
3. Staining solution preheated to 60°C: 1-2 hours
 - This is carried out in a Coplin jar angled at 60° to prevent precipitate falling on the section.
 - Over-staining should be avoided by periodically checking the section
4. Wash in distilled water
5. Tone in 0.2% gold chloride
6. Counterstain with dilute aqueous light green.

Periodic acid-Schiff

1. 1% periodic acid: 30 minutes
2. Wash in water
3. Double strength cold Schiff reagent (Lillie and Fullmer, 1976): 6 hours
4. Wash in water overnight
5. Counterstain with Mayer’s haematoxylin: 4 minutes.

Clearing and mounting

All sections are cleared in xylol and mounted in DPX.

Results and discussion

Sections from both methacrylate and Spurr-embedded material are vastly superior to those obtained from conventional paraffin blocks (Fig. 2), so that the light microscope can be used to the limit of its resolving power. The preservation of cytological detail is such that macrophages, alveolar lining cells, and endothelial cells may be differentiated with ease (Fig. 3). At lower magnifications, the walls of small air spaces are well defined, and even when the specimen has been partially crushed a useful diagnostic opinion can be given.

Staining reactions are identical with those in paraffin sections. However, with EVG, although the elastic tissue stains in the conventional way, the counterstain is pale. This causes no difficulty when the sections are examined microscopically, but photographs of such material are disappointing. When material has been embedded in Spurr resin and stained with haematoxylin and eosin, the elastic tissue is brilliantly eosinophilic. The PAS reaction is identical with that seen in paraffin sections, except that intracellular PAS-positive particles are much more sharply defined.

The most interesting result of our investigation is the clarity with which alveolar capillaries are demonstrated by the PAAg stain. These minute vessels are indistinct in paraffin-embedded material but are strikingly obvious in plastic sections. Furthermore, in cases of cryptogenic fibrosing alveolitis, they undergo aneurysmal dilatation and often appear to lie each side of the thickened alveolar interstitium (Fig. 4). This dilatation, which may be missed in paraffin sections, occurs in parts of the lung not affected by honeycomb change. Its significance is not yet apparent, but it is highly characteristic and a useful diagnostic feature in biopsy material.

When the two methods are compared, methacrylate produces superior results. With the Spurr technique the maximum size of sections obtainable is 0.5 x 0.5 cm, so that larger biopsies cannot be accommodated. This is due to the small travel of the ultramicrotome and the limited width of the glass knife. On the other hand, with methacrylate, although the width of the blocks is restricted due to the hardness of the material, their length can be as
Fig. 2 A transbronchial biopsy from a case of organising pneumonia. Alveoli are partly collapsed but easily recognisable. The embedding medium has taken up the stain to a slight extent and appears as diagonal background streaks in the upper left side of the picture. 2μm methacrylate section. Haematoxylin and eosin × 112.

Fig. 3 A higher power view of Fig. 2. Note the clarity with which the cells of the bronchial wall are demonstrated. Haematoxylin and eosin × 284.
Fig. 4 A transbronchial biopsy from a case of fibrosing alveolitis. There is no honeycomb change, but the characteristic aneurysmal dilatation of the alveolar capillaries is well shown. Periodic acid-silver × 112.

much as 2 centimetres. An added advantage is that a standard base sledge microtome with a steel knife is used. Furthermore, staining reactions, although satisfactory with either technique, are more intense and more uniform in methacrylate.

Methacrylate-embedded sections contain resin which cannot be removed, and this takes up the stain to a certain extent. However, this background staining is extremely faint, although a precipitate of silver salts is sometimes seen in PAAg sections. With Spurr resin the embedding medium can be completely removed from the sections in most cases, but it sometimes remains in air spaces and vascular lumens, and when it does so it stains heavily, obscuring histological details.

In conclusion, it may be said that plastic embedding techniques open up a new dimension in the investigation and diagnosis of lung disease. Sections are of such high quality that we would strongly recommend their routine use for transbronchial biopsies. In our hands, the more satisfactory method is that using methacrylate. The tissue blocks that can be accommodated are larger, and staining is marginally better. However, high-quality sections are also obtainable using Spurr resin.

We are grateful to Mrs Ruth Fry for typing the manuscript.

References

Requests for reprints to: Dr C. W. Edwards, Department of Histopathology, East Birmingham Hospital, Bordesley Green East, Birmingham B9 5ST, UK.
Plastic embedding of transbronchial biopsy specimens for light microscopy.
C W Edwards, A Krypczyk and A Brownhill

J Clin Pathol 1979 32: 1294-1298
doi: 10.1136/jcp.32.12.1294

Updated information and services can be found at:
http://jcp.bmj.com/content/32/12/1294.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/