Biosynthesis and characterisation of IgMλ in a case of chronic lymphocytic leukaemia with intracellular immunoglobulin inclusions

G. H. ROBERTS¹, J. GORDON², J. L. SMITH², D. NEWELL², AND R. PIKE³

From the ¹Department of Haematology, St Richard’s Hospital, Chichester, Sussex, the ²Immunology Unit, Tenovus Research Laboratory, Southampton University, and the ³Department of Haematology, Worthing Hospital, Worthing, Sussex, UK

SUMMARY Lymphocytes from a patient with chronic lymphocytic leukaemia were found to contain crystalline inclusions in the cytoplasm. These crystals were characterised as IgMλ immunoglobulin. The cells did not have detectable surface immunoglobulin. No paraprotein was detected in the serum and no excess of immunoglobulin was detected in the urine. The cells incorporated radioactive leucine into µ and λ chains during an 18-hour culture. Studies of labelled lysate immunoglobulin revealed a molar excess of heavy chain over light chain while in contrast free light chain was the only detectable secreted immunoglobulin product during the culture period. These findings are discussed in relation to immunoglobulin synthesis by normal and other neoplastic lymphocyte preparations.

The lymphocytes of patients with chronic lymphocytic leukaemia (CLL) may contain crystals of immunoglobulin in their cytoplasm (Clark et al., 1972; Hurez et al., 1972; Cawley et al., 1973). It has been suggested (Cawley et al., 1976) that these crystals can be found in the lymphocytes of about 5% of patients with CLL. This report describes a case of CLL where more than half the lymphocytes contained IgMλ inclusions.

In previous case reports the cells with intracellular IgMλ type crystals (Clark et al., 1972; Hurez et al., 1972; Preud’homme and Seligmann, 1972; Cawley et al., 1976) expressed the same immunoglobulin on the cell surface membrane. The failure to express surface immunoglobulin has been reported in one case with crystalline cytoplasmic inclusions where the cells contained IgAλ (Cawley et al., 1973). The case described in this report did not have detectable surface IgMλ.

Clinical data

A retired carpenter aged 82 presented in September 1976 with a history of necrotic ulcers on the lips, neck, and chest for two months. He had had a similar lesion on the scrotum five months previously which had healed spontaneously. Apart from a prostatectomy in 1973 for benign prostatic hypertrophy he had had no serious illnesses.

On examination there was axillary and inguinal lymphadenopathy and the liver and spleen were both moderately enlarged. Biopsy of the ulcers showed severe vasculitis but no leukaemic infiltration. The haemoglobin was 11.5 g/dl, total white count 62.0 × 10⁹/l with 1% neutrophils and 99% mature lymphocytes. More than 55% of the lymphocytes contained cytoplasmic inclusions. Platelets were 140 × 10⁹/l. Total protein was 60 g/l and albumin 41 g/l. There was a decrease of all the gammaglobulins: IgG 2.8 g/l, IgM < 0.4 g/dl, and IgA < 0.4 g/l.

He was treated with prednisone, 15 mg, and chlorambucil, 5 mg, daily, and on this treatment the ulcers improved and the lymph nodes became smaller. The spleen remained unchanged in size.

One year later the haemoglobin is 12.4 g/dl, total white count 18.7 × 10⁹/l, neutrophils 7%, monocytes 1%, and mature lymphocytes 92%. The intracellular crystalline inclusions detected at presentation are still present. The ulcers have healed, the lymph nodes are not enlarged, but the spleen is still the same size.
Biosynthesis and characterisation of IgMλ in a case of chronic lymphocytic leukaemia

Material and methods

CYTOLOGICAL AND CYTOCHEMICAL STUDIES
In addition to staining with Leishman’s stain, smears of whole blood were stained with peroxidase, Sudan black, periodic acid Schiff, and alkaline phosphatase stains using routine haematological cytochemical methods (Hayhoe and Flemans, 1969). Pure lymphocyte preparations free of erythrocytes were prepared from heparinised blood by trisilicoll gradient sedimentation (Thorsby and Bratlid, 1970). The cells were washed three times with Modified Eagles Medium and subsequently used for immunofluorescent studies. Cytocentrifuge preparations were also stained for protein using the Ninhydrin-Schiff method (Yasuma and Ichikawa, 1953).

ELECTRON MICROSCOPY
Lymphocytes were separated from heparinised whole blood by dextran sedimentation, fixed in 1.5% glutaraldehyde, and processed for electron microscopy as previously described (Cawley and Hayhoe, 1973).

IMMUNOFLOUORESCENT STAINING
Membrane fluorescence was performed on washed lymphocytes after incubation for one hour at 37°C by the direct method using fluorescein-labelled rabbit and sheep antisera against μ, γ, α, and δ heavy chains and κ and λ light chains; fluorescein-labelled rabbit and sheep normal sera were included in all experiments. The preparations were stained for 20 minutes on ice and washed three times with cold phosphate buffered saline (PBS) before resuspension in 50% glycerol in saline. The antisera were raised by immunisation with myeloma and/or pooled normal purified immunoglobulin as antigen, and were then absorbed with purified immunoglobulin coupled to Sepharose 4B to remove unwanted cross-activities. All antisera were checked for specificity by their ability to stain purified myeloma proteins coupled to Sepharose G-25. Cytoplasmic immunofluorescence preparations of washed lymphocytes were fixed overnight in dry acetone at −20°C and stained by the direct method. Controls using normal rabbit or sheep sera were included in all experiments.

Fluorescent-stained fixed smears and viable cell suspensions were mounted in 1:1 glycerol solution and examined under a Zeiss epiluminescent microscope fitted with an Osram HPO 200 mercury vapour lamp.

IMMUNOGLOBULIN STUDIES
Serum was assayed for immunoglobulin levels using a laser nephelometer (Travenol Labs Ltd, UK) and was electrophoresed on plastic-backed cellulose acetate plates (Millipore UK Ltd). An aliquot of a 24-hour urine was concentrated × 200 and analysed by electrophoresis. Immunoelectrophoresis was carried out using preformed agar plates (Millipore UK Ltd) and antisera to IgG, A, M, D heavy chains, and κ and λ light chains.

ROSETTE TESTS
Tests for rosette formation with ox and sheep cells prepared using the method of Smith and Haerdt (1974) were carried out to identify E, Fc, and C3 receptors on the cell surface.

IMMUNOGLOBULIN SYNTHESIS
Biosynthetic labelling techniques and the subsequent characterisation and quantification of labelled immunoglobulin have been described in detail elsewhere (Gordon et al., 1978). Briefly, cells at 5 × 10⁶/ml were incubated in leucine-free medium containing ³H-leucine at 25 μCi/ml for 18 hours at 37°C. Cells were separated from the supernatants by centrifugation and lysed with PBS containing detergent NP₄O and proteolytic inhibitors. Both the cell lysates and supernatants were spun at 35 000 g to remove cell debris and dialysed exhaustively against PBS. The radioactivity incorporated in all macromolecules was determined by precipitation with 10% trichloroacetic acid (TCA). Labelled immunoglobulin was precipitated using a sandwich technique with sheep antiserum specific for human immunoglobulin as the first antibody and rabbit antiserum with activity to sheep immunoglobulin as the second antibody. Normal sheep serum was used as the first antibody in control precipitations. These immunoglobulin precipitates were washed three times with cold PBS before counting or preparation for gel analysis. Reduced and alkylated immunoglobulin precipitates were analysed on 9.5 cm long 7.5% sodium dodecyl sulphate-polyacrylamide gel electrophoresis with radiolabelled myeloma IgG and IgM markers.

Results

CYTOCHEMICAL STUDIES
In Romanowsky preparations the crystals appeared as large, unstained, rod-like shapes in about 55% of the lymphocytes (Fig. 1). The inclusions did not stain with routine haematological cytochemical stains (peroxidase, PAS, and alkaline phosphatase) but reacted positively with the Ninhydrin-Schiff method.
Fig. 1  Romanowsky preparations showing crystalline inclusions. × 40

**FLUORESCENT STUDIES**
The crystals were shown to be IgM lambda in nature (Fig. 2). The crystals were large and rod-shaped, and some cells had more than one in the cytoplasm. No surface immunoglobulins were detected on the surface of the lymphocytes. The incidence of the crystals in the fluorescent preparations was about 60%; this proportion is somewhat higher than that seen in the Romanowsky preparations and is consistent with previous data.

**SERUM ELECTROPHORESIS**
No paraproteins were detected in the serum but the gammaglobulin was markedly depressed, and the levels of IgM, IgA, and IgG were 2-8, 0-4, and 0-4 g/l respectively. Normal levels for this laboratory are IgG 7·2-13·0, IgA 1·0-3·6, and IgM 0·5-1·5 g/l. No excess of immunoglobulin fragments was found in the urine.

**ELECTRON MICROSCOPY STUDIES**
The majority of cells contained only one crystal, although two or more were seen in some cells (Fig. 3).

**IMMUNOGLOBULIN SYNTHESIS STUDIES**
During an 18-hour culture period the patient’s cells synthesised and secreted immunoglobulin precipitable with polyvalent antiserum to human immunoglobulin (Table 1). The amount of immunoglobulin synthesised expressed as a percentage of the total protein produced was comparable to other cases of CLL but less than normal peripheral blood cultures (Table 2).

Antiserum for light chain precipitated all the labelled supernatant immunoglobulin from the patient while no significant counts above control were precipitated with K-light chain specific antiserum (Table 1). Gel electrophoresis of the reduced and alkylated supernatant immunoglobulin revealed a light chain peak but no detectable heavy chain peak. This contrasted with a normal peripheral blood culture supernatant which showed significant peaks in both heavy and light chain regions (Fig. 4). Gel analysis of the patient’s lysate revealed a light chain peak and a heavy chain peak with a mobility similar to myeloma \( \mu \) chain (Fig. 4). A third peak migrating just faster than the \( \gamma \) chain marker was present in both specific and control lysate precipitations from normal peripheral blood, the patient’s blood, and other CLL cultures. From the counts associated with the heavy and light chain peaks on gel analysis, the molar ratio of the two chains can be calculated: 1:0 would indicate a balanced synthesis. Consistent with other cases of CLL, free light chain was the only detectable secreted immunoglobulin product from the patient (Table 2). Labelled lysate immuno-
**Immunoglobulin synthesis by patient's cells**

<table>
<thead>
<tr>
<th>Culture fraction</th>
<th>TCA (total protein)</th>
<th>Polyclonal Ig antiserum</th>
<th>Normal sheep serum (control)</th>
<th>Anti-λ chain antiserum</th>
<th>Anti-μ chain antiserum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supernatant</td>
<td>140,000</td>
<td>4000</td>
<td>1203</td>
<td>4300</td>
<td>1400</td>
</tr>
<tr>
<td>Lysate</td>
<td>1,344,000</td>
<td>8800</td>
<td>3200</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

*Results given are cpm of $^3$H-radioactivity incorporated per $10^7$ cells.

nd = not determined.

All results are the mean of three experiments.

**Heavy and light chain synthesis by normal and neoplastic cells**

<table>
<thead>
<tr>
<th>Sample</th>
<th>Supernatant Ig</th>
<th>Lysate Ig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ig as % of total protein synthesised</td>
<td>Light/Heavy (molar ratio)</td>
</tr>
<tr>
<td>PUT</td>
<td>0.2</td>
<td>LC only†</td>
</tr>
<tr>
<td>'Typical' CLL‡ (mean of eight cases)</td>
<td>0.4 (range 0.1-0.7)</td>
<td>LC only</td>
</tr>
<tr>
<td>Normal peripheral blood (mean of five samples)</td>
<td>0.9 (range 0.2-1.5)</td>
<td>1:1 (range 1:0.1-3)</td>
</tr>
</tbody>
</table>

*Molar ratios calculated on the basis of 17 leucine residues in light chain and 38 residues in heavy chain.

†Labelled light chain only detected on gel electrophoresis.

‡Cases where the neoplastic cells did not have detectable cytoplasmic Ig.
globulin from the patient showed a molar excess of heavy chain; all other cases of CLL revealed an intracellular light chain excess. Normal peripheral blood lymphocytes showed either a balanced synthesis or only a slight light chain excess (Table 2).

Discussion

Crystalline inclusions in CLL have been reported previously (Bessis, 1951; Bernard et al., 1959; De Man and Meiners, 1962; Hurez et al., 1972; Cawley et al., 1973). It is interesting to note that in the previous cases with IgM lambda crystals (Clark et al., 1972; Hurez et al., 1972; Preud’homme and Seligmann, 1972; Cawley et al., 1976) the immunoglobulin of the crystals was expressed at the surface of the cell. In our case no surface immunoglobulin could be detected. The significance of this result is not clear, nor indeed is the clinical significance of the crystals.
Biosynthesis and characterisation of IgM\(\lambda\) in a case of chronic lymphocytic leukaemia

Fig. 3(b) Electron micrograph of cells. Note size of inclusion: (a) \(\times 33\,750\); (b) \(\times 41\,600\)

The light chain specificity of the labelled immunoglobulin in the culture supernatant was consistent with the immunofluorescence data and provided good evidence for its neoplastic cellular origin. The rate of the immunoglobulin synthesis and secretion was comparable to that of other cases of CLL and at first analysis revealed no indication of a secretory block. Consistent with recent reports (Gordon et al., 1978; Maino et al., 1977) the patient's lymphocytes shared with other CLL cells the capacity to synthesise and secrete free light chain in vitro. However, a unique feature of this case was the accumulation of an intracellular, labelled, heavy chain excess which was not secreted during the culture period.

It has been suggested that the glycosylation of the polypeptide chain may be an essential element in the secretion of some immunoglobulin molecules (Melchers and Andersson, 1973), and a defect in this mechanism might explain the lesion in this case. Negative PAS staining, suggesting an absence of glycoprotein within the inclusions, would be consistent with such a defect. However, the process of carbohydrate addition may be operative in these cells as the intracellular heavy chain had a mobility on sodium dodecyl sulphate gels similar to that of the myeloma \(\mu\) chain; any significant deletion in either the polypeptide chain or the number of carbohydrate residues would presumably have resulted in an apparently lower molecular weight.

However, Nies et al. (1976) have postulated that
an aberrant or even excess addition of carbohydrate might be responsible for the inability of some cells to secrete immunoglobulin and that this could result in the subsequent formation of intracytoplasmic inclusions. As the addition of carbohydrate does not appear to be a necessary prerequisite for light chain secretion (Eagon and Heath, 1977), the capacity of our patient's cells actively to secrete free light chain but not heavy chain would be in accord with such a defect.

The third peak in both specific and non-specific precipitations of the lysate has been reported previously (Gordon et al., 1977) and may relate to the Fc receptor (Vitetta et al., 1974).

The absence of an abnormal \( \mu \) chain component in the serum or urine was consistent with the biosynthetic studies while the inability to detect Bence-Jones protein in \( \times 200 \) concentrated urine by electrophoresis probably reflects the increased sensitivity of the \textit{in vitro} biosynthetic studies. Our inability to detect surface IgM is consistent with a defective immunoglobulin transport mechanism in the cell and suggests that the nature of the lesion may be more primitive in our patient's cells than in those cases expressing membrane immunoglobulin.

We thank Dr J. F. P. Skrimshire for permission to publish details of his patient, and Drs C. J. T. Bateman and A. M. Ranken for their valuable assistance in preparing this paper. We also acknowledge the Leukaemia Research Fund, the Wessex Oncology Fund, and the Wessex Regional Health Authority for financial support.

\textbf{References}

Biosynthesis and characterisation of IgMλ in a case of chronic lymphocytic leukaemia


Requests for reprints to: G. H. Roberts, Department of Haematology, Pathology Laboratory, St Richard's Hospital, Spitalfield Lane, Chichester, West Sussex, PO19 4SE, UK.
Biosynthesis and characterisation of IgM lambda in a case of chronic lymphocytic leukaemia with intracellular immunoglobulin inclusions.

G H Roberts, J Gordon, J L Smith, D Newell and R Pike

*J Clin Pathol* 1979 32: 272-279
doi: 10.1136/jcp.32.3.272

Updated information and services can be found at:
http://jcp.bmj.com/content/32/3/272

**Email alerting service**

*These include:*

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

**Notes**

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/