Urinary infection with coagulase-negative staphylococci in a teaching hospital

T. L. SHRESTHA1 AND J. H. DARRELL

From the Department of Bacteriology, Royal Postgraduate Medical School, Hammersmith Hospital, Du Cane Road, London W12, UK

SUMMARY In the eight-month period of study of all urine samples processed in our routine laboratory, only 85 out of 12 152 specimens yielded a bacteriologically significant growth of either Staphylococcus epidermidis or micrococci. Their growth on MacConkey medium was strictly comparable to that on cysteine lactose electrolyte-deficient (CLED) media. Most micrococci isolated were from urine samples of non hospitalised women patients, were resistant to a novobiocin (5 μg) disc, and belonged to Baird Parker type 3. Staph. epidermidis came mainly from postoperative surgical inpatients. Their antibiotic sensitivity patterns are variable whereas micrococci are fully sensitive to all urinary antibiotics. We agree that the use of a novobiocin (5 μg) disc for provisional identification of micrococci and Staph. epidermidis is simple and practical for a busy routine diagnostic laboratory. The use of more extensive systems to biotype these organisms in a routine laboratory is not practical and not relevant to patient management.

The undoubted role of catalase-positive, coagulase-negative Gram-positive cocci, Staphylococcus epidermidis, and Micrococcus species in causing urinary tract infection has gradually become accepted in recent years. These organisms did not appear to occur commonly in our routine practice, though other workers have reported an incidence ranging from complete absence (Arneil et al., 1970) to 30% of isolates (Gillespie et al., 1978). We therefore decided to collect and identify all these organisms occurring in urine samples reaching our diagnostic laboratory from inside and outside the hospital in order to establish their frequency and to assess the suitability of our methods for isolation and identification.

Material and methods

Urine samples received in the routine laboratory are cultured without delay or stored for up to 3 hours at 2-4°C on a CHEMLAB Bench Cooler. The well-mixed unspun urine is streaked onto a MacConkey plate (Oxoid CM76) using a calibrated loop delivering 0-003 ml of urine. For the purposes of this investigation duplicate cultures were prepared on plates of Cysteine Lactose Electrolyte Deficient (CLED) Agar, (Oxoid CM301). These were prepared in an exactly comparable manner to the McConkey plates, four specimens being cultured on one plate. A growth of 300 colonies or more of an organism is considered bacteriologically significant. Those yielding 30 colonies or less are discarded.

A wet preparation of the spun deposit (centrifuged for 10 minutes at 2000 rpm) is examined microscopically for formed elements, leucocytes, red blood cells, and bacteria. Those samples which have got pus cells, bacteria, or red cells require primary sensitivity tests, to sulphafurazole (200 μg), trimethoprim (2-5 μg), ampicillin (25 μg), nitrofurantoin (50 μg), and cephaloridine (25 μg). These tests are carried out on lysed blood agar plates ((Iso-Sensitest) Oxoid CM471 with 5% horse blood lysed with saponin) using Stokes’ method and Escherichia coli NCTC 10418 as the control organism. After overnight incubation at 37°C all the cultures on CLED medium were read by one of us (TLS), and the results were compared with those of the routine cultures set up at the same time on MacConkey medium. Cultures yielding a bacteriologically significant growth of Gram-positive cocci, as defined above, were tested for coagulase production by the tube method of Gillespie (1943); catalase production was tested by the slide method.
(Cruickshank et al., 1975). Catalase-positive, coagulase-negative strains were biotyped using the methods of Baird-Parker (1963). In addition, strains were tested for sensitivity to a 5 μg novobiocin disc (Mitchell, 1968) as a diagnostic sensitivity test. These tests were carried out in parallel on Mueller-Hinton agar (Oxoid CM337), Wellcotest sensitivity test agar (Wellcome Reagents Limited, CM53), and Iso-Sensitest agar (Oxoid CM471) without added blood. Sensitive organisms gave a zone of inhibition measuring 8 mm or more from the edge of the disc.

Results

During the eight-month period October 1977-May 1978, our diagnostic laboratory processed 12,152 urine specimens. They were received from hospital ward patients, from those attending outpatient clinics, and from general practitioners. Of these specimens, 1186 gave significant bacteriuria due to all kinds of bacteria. Only 85 samples yielded a bacteriologically significant growth of Gram-positive, coagulase-negative, catalase-positive cocci (Table 1). Of these 85 samples, 17 were from non-hospitalised patients, all but one of them being female. The rest of the specimens were from hospitalised patients, that is, inpatients and outpatients (Table 2). Cultures on MacConkey agar and CLED medium gave strictly comparable results. Each of the 85 strains was recovered on both media, giving approximately equal numbers of colonies of the same size.

Of the 85 strains tested, 15 only were found to be micrococcus type 3, now re-classified as *Staphylococcus saprophyticus* biotype 3 on the basis of guanine and cytosine content of DNA (Buchanan and Gibbons, 1974). All these isolates were resistant to a 5 μg novobiocin disc.

No other micrococcus biotypes were encountered in this study. Ten of the 15 micrococi occurred in the group of patients who had never been hospitalised, that is, samples submitted by family practitioners, from the casualty department, and from the antenatal clinic. The other five occurred in hospitalised patients, accounting for only 8% of isolates in this group (Table 2).

All the hospital outpatient isolates were of *Staph. epidermidis* and occurred in patients who had recently left hospital (Table 2).

All micrococi were found to be sensitive to all antimicrobial agents tested in the primary sensitivity tests. The pattern of sensitivities is different with staphylococci and very variable (Table 2).

Discussion

The slow recognition of coagulase-negative staphylococci, especially micrococi (*Staph. saprophyticus*), as urinary pathogens in hospital practice is hardly surprising. In our series, they account for only 7.16% of the significant isolates. We are able to confirm the findings of other workers (Mitchell, 1968; Kerr, 1973; Maskell, 1974; Meers et al., 1975; Sellin et al., 1975; Pead et al., 1977) that they account for a significant proportion of primary urinary infections, Gram-positive cocci occurring in women outside hospital, whereas in a hospital population their contribution is trivial. They do not commonly cause postoperative infections in males; these frequently follow surgery and are caused by *Staph. epidermidis*. The micrococi isolated by us were all type 3, now reclassified as *Staph. saprophyticus* biotype 3.

We were able to show that all strains of *Staph. epidermidis* and micrococi (*Staph. saprophyticus*) isolated by us from urine samples grew well on our routine MacConkey media. Hence, in our view, there is no need to include a special medium such as CLED when screening urines in order to isolate these organisms, provided the MacConkey medium in use has similar selective properties.

The biochemical methods of Baird-Parker (1963) are relatively time-consuming for the routine laboratory. However, they may be useful in associating

Table 1 Urine specimens, October 1977-May 1978

Total number processed in the laboratory	12,152
Significant bacteriuria due to all kinds of bacteria	1186 (9.76%)
Significant bacteriuria due to coagulase-negative	
Gram-positive cocci out of all significant bacteriuria	85 (7.16%)

Table 2 Staphylococcal urinary infection in three groups of patients

<table>
<thead>
<tr>
<th></th>
<th>Hospital inpatients</th>
<th>Hospital outpatients</th>
<th>Non-hospitalised* patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staph. epidermidis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Staph. albus)</td>
<td>Male 40</td>
<td>Male 4</td>
<td>Male 1</td>
</tr>
<tr>
<td></td>
<td>Female 16</td>
<td>Female 3</td>
<td>Female 6</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Staph. saprophyticus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Micrococcus type 3)</td>
<td>Male 2</td>
<td>Male —</td>
<td>Male 0</td>
</tr>
<tr>
<td></td>
<td>Female 3</td>
<td>Female —</td>
<td>Female 10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Totals</td>
<td>61</td>
<td>7</td>
<td>17</td>
</tr>
</tbody>
</table>

General practitioner patients and patients attending casualty or antenatal clinic.
Table 3 Sensitivity patterns of micrococci type 3 and other coagulate-negative staphylococci from urine

<table>
<thead>
<tr>
<th>Organism</th>
<th>Sulphonamide</th>
<th>Trimethoprim</th>
<th>Ampicillin</th>
<th>Nitrofurantoin</th>
<th>Cephaloridine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus</td>
<td>63/69</td>
<td>37/69</td>
<td>37/66*</td>
<td>65/67*</td>
<td>61/64*</td>
</tr>
<tr>
<td>Micrococcus type 3</td>
<td>14/14</td>
<td>14/14</td>
<td>14/14</td>
<td>14/14</td>
<td>14/14</td>
</tr>
</tbody>
</table>

*Low total numbers due to failure to perform test.

Reviewing the sensitivity patterns of all our isolates (Table 3), it is surprising that so many strains of both micrococci and *Staph. epidermidis* are fully sensitive in vitro to sulphonamides and equally surprising that so many of the staphylococci are resistant to trimethoprim. This may reflect heavy usage of cotrimoxazole in hospital patients. In view of the complicated nature of many of the postoperative staphylococcal infections, use of sulphonamides alone would hardly recommend itself as a treatment likely to succeed. The fact that half our strains were resistant to ampicillin is not now surprising, and all strains are, of course, resistant to nalidixic acid. In view of the relative resistance to mecillinam, the place of this antibiotic in treating staphylococcal urinary infections must remain in doubt in spite of the high urinary levels attained. This means that the oral treatment of first choice for such infections would have to be an oral cephalosporin, with nitrofurantoin as a possible alternative.

We thank all the technical staff working in the urine section for their co-operation, Harry Edwards and his staff for preparation of media, and Miss A. Kirk for typing this manuscript.

References

Gillespie, E. H. (1943). The routine use of the coagulase
Requests for reprints to: Dr J. H. Darrell, Department of Bacteriology, Royal Postgraduate Medical School, Hammersmith Hospital, Ducane Road, London W12 0HS, UK.

Reports and Bulletins prepared by the Association of Clinical Biochemists
The following reports and bulletins are published by the Association of Clinical Biochemists. They may be obtained from The Publishing Department, British Medical Journal (ACB Technical Bulletins), B.M.A. House, Tavistock Square, London WC1H 9JR. Overseas readers should remit by British Postal or Money Order.

SCIENTIFIC REVIEWS (price £1.00/$2.00 each)

1 The assessment of thyroid function March 1971
F. V. FLYNN and J. R. HOBBs

2 Renal function tests suitable for clinical practice January 1972
F. L. MITCHELL, N. VEALL, and R. W. E. WATTS

3 Biochemical tests for the assessment of fetoplacental function May 1975
C. E. WILDE and R. E. OAKEY

4 Test of exocrine pancreatic function March 1977
A. H. GOWENLOCK

TECHNICAL BULLETINS (price £1.00/$2.00 each)

22 Bilirubin standards and the determination of bilirubin by manual and technicon AutoAnalyzer methods January 1971
BARBARA BILLING, RUTH HASLAM, and N. WALD

23 Interchangeable cells for spectrophotometers and fluorimeters September 1971
S. S. BROWN and A. H. GOWENLOCK

24 Simple tests to detect poisons March 1972
B. W. MEADE et al.

25 Blood gas analysers May 1972
K. HOBBs

26 Kits for enzyme activity determination September 1972
S. B. ROSALKI and D. TARLOW

27 Assessment of pumps suitable for incorporation into existing continuous flow analytical systems November 1972
A. FLECK et al.

28 Routine clinical measurements of transferrin in human serum September 1973
K. HOBBs

29 Control materials for clinical biochemistry (5th edition) September 1973
J. F. STEVENS

30 Notes on the quality of performance of serum cholesterol assays September 1973
S. S. BROWN

31 Determination of uric acid in blood and in urine July 1974
R. W. E. WATTS

32 A survey of amino acid analysers readily available in the United Kingdom September 1974
J. E. CARLYLE and F. PURKISS

33 Definitions of some words and terms used in automated analysis November 1974
A. FLECK, R. ROBINSON, S. S. BROWN, and J. R. HOBBs

34 Measurement of albumin in the sera of patients January 1975
LINDA SLATER, P. M. CARTER, and J. R. HOBBs

35 Investigation of the validity of temperature correction factors for serum aspartate and alanine transaminases March 1975
S. B. ROSALKI et al.

36 Factors influencing the assay of creatinine November 1975
J. G. H. COOK

37 A survey of enzyme reaction rate analysers readily available in the United Kingdom July 1977
R. A. SAUNDERS and R. F. BURNS

38 Transport of specimens for clinical chemistry analysis November 1977
P. WILDING, J. F. ZILVA, and C. E. WILDE

39 A scheme for the evaluation of diagnostic kits May 1978
P. H. LLOYD
Urinary infection with coagulase-negative staphylococci in a teaching hospital.
T L Shrestha and J H Darrell

J Clin Pathol 1979 32: 299-302
doi: 10.1136/jcp.32.3.299

Updated information and services can be found at:
http://jcp.bmj.com/content/32/3/299

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/