Haematological features of angioimmunoblastic lymphadenopathy with dysproteinaemia

From the Departments of Haematology, Histopathology, and Medical Oncology, St Bartholomew’s Hospital and Medical College, London EC1A 7BE, UK

SUMMARY A study of seven patients with AILD has confirmed previously reported cytological and immunological changes in the peripheral blood. In themselves these changes should not be considered as specific. Histological examination of the bone marrow may show more characteristic lesions which involve haemopoietic, lymphoid, and stromal cells. Three patients had bone marrow features similar to myelofibrosis, which are considered to be diagnostic of AILD.

Angioimmunoblastic lymphadenopathy with dysproteinaemia (AILD) (Frizzera et al., 1974; 1975) and immunoblastic lymphadenopathy (IBL) (Lukes and Tindle, 1975) have been independently described and are possibly identical clinicopathological syndromes which are distinct from Hodgkin’s disease and non-Hodgkin’s lymphoma. Both AILD and IBL may prove rapidly fatal and yet lack conventional histological criteria of malignancy. Pathological diagnosis is based on a triad of lymph node changes, namely, obliteration of nodal architecture by a pleomorphic lymphocyte, plasma cell and immunoblast proliferation, prominent arbourising vasculature, and intercellular deposits of eosinophilic, periodic acid-Schiff (PAS) positive material.

Clinically, the syndromes usually present as a systemic disease, with generalised lymphadenopathy, hepatosplenomegaly, a maculopapular skin rash, and constitutional symptoms. Typical cases exhibit a polyclonal increase in immunoglobulins, and in two-thirds the Coombs’ (anti-globulin) test is positive (Frizzera et al., 1975; Lukes and Tindle, 1975; Flandrin, 1976; Neiman et al., 1978; Pangalis et al., 1978). Rappaport and co-workers have recently reported a higher incidence of blood and marrow involvement with AILD than they initially described, and they suggest that marrow changes, in particular, are as diagnostic of AILD as lymph node histology (Pangalis et al., 1978). We report here our experience of AILD/IBL with particular reference to the haematological features.

Received for publication 23 August 1978

Material and methods

Seven patients were identified by one of us (AGS) on the basis of the pretreatment histology of lymph nodes from six patients and a skin biopsy in one. Peripheral blood and bone marrow aspirates were available in all patients and trephine biopsies in six. The Coombs’ test was performed using mono-specific antisera to IgG, IgM, IgA, and complement (2d/C3d) in six patients and with a broad-spectrum reagent in one. Red cell eluates, prepared by the method of Rubin (1963), and sera were screened for antibody specificity against a typed panel of red cells using low temperature saline, albumin, papain, and antiglobulin techniques.

Results

CLINICAL FEATURES

Presenting symptoms and clinical findings are summarised in Table 1. All patients had constitutional symptoms, and four had skin rashes unrelated to drug exposure. Generalised lymphadenopathy was found in all patients and splenomegaly or hepatomegaly in six. The patients were treated with steroids and cytotoxic drugs, and all have died. Survival from the onset of symptoms, terminal events, and necropsy findings are shown in Table 1. The major terminal illness in five patients was pneumonia or sepsicaemia. There was necropsy evidence of cytomegalovirus (CMV) and Pneumocystis carinii infection in two patients. Although generalised AILD/IBL lesions were found at
necropsy in four patients, the process appeared to be 'burnt out' in two patients, being characterised by lesions showing lymphocyte depletion, hyalinisation, and fibrosis. Transformation to a malignant immunoblastic lymphoma was observed in two patients.

PERIPHERAL BLOOD
The haematological findings in the peripheral blood are shown in Table 2. The most striking changes were found in the white cell series. The total count ranged from 6.2 to 32.7 × 10^9/L. Differential counts indicated neutrophilia in two patients, eosinophilia in four, and lymphocytopenia (<1.5 × 10^9/L) in five patients. Lymphoplasmacytoid or 'atypical mononuclear' cells were present in the blood of all patients. Five patients had a normochromic, normocytic anaemia, but two (cases 2 and 7) had evidence of haemolysis with spherocytosis, reticulocytosis, and raised plasma bilirubin (>40 μmol/L), although only case 2 had a positive Coombs' test. The platelet count was >100 × 10^9/L in all cases.

SEROLOGY
Five patients exhibited a diffuse hypergamma-globulinaemia, and five, a positive Coombs' test (Table 2). Tests with monospecific antisera showed red cell coating with IgG and complement in three patients, and IgG alone in one. Warm-type autoantibodies were detected in the serum of patients with a positive direct Coombs' test, and similar autoantibodies were found in the red cell eluates. Specificity for these autoantibodies could not be established, but allo-anti-E was detected in the sera of two patients and allo-anti-E plus Kell in another.

BONE MARROW
Results of bone marrow aspirates and trephine biopsies are shown in Table 3. The cellularity of aspirated marrow fragments was normal in one patient but moderately to markedly increased in the others. Erythropoiesis was normoblastic, and precursors were present in normal numbers in three patients, moderately increased in two, but decreased (<10%, nucleated cell count) in two. Eosinophils were increased (>10%) in four patients. Plasma cells and lymphoplasmacytoid cells similar in morphology to those seen in peripheral blood and lymph node imprints were present in all patients.

Unilateral bone marrow trephine biopsies were

Table 1 Clinical features at presentation and death

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Sex</th>
<th>Presenting symptoms</th>
<th>Physical findings</th>
<th>Survival (months)</th>
<th>Terminal events</th>
<th>Necropsy findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62</td>
<td>M</td>
<td>Anorexia, pruritus, acute abdominal pain</td>
<td>Lymphadenopathy, spontaneous splenic rupture</td>
<td>6</td>
<td>Gastrointestinal haemorrhage</td>
<td>Generalised, active AILD/IBL</td>
</tr>
<tr>
<td>2</td>
<td>69</td>
<td>M</td>
<td>Anorexia, weight loss, enlarging lymph nodes</td>
<td>Lymphadenopathy, splenomegaly</td>
<td>6</td>
<td>Septicaemia</td>
<td>CMV, Pneumocystis carinii pneumonia, 'burnt-out' AILD/IBL</td>
</tr>
<tr>
<td>3</td>
<td>63</td>
<td>M</td>
<td>Anorexia, weight loss, skin rash</td>
<td>Lymphadenopathy, splenomegaly, Raynaud's phenomenon</td>
<td>14</td>
<td>Unresponsive immunoblastic lymphoma</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>M</td>
<td>Skin rash, night sweats, dyspnoea</td>
<td>Lymphadenopathy, splenomegaly, Raynaud's phenomenon</td>
<td>19</td>
<td>Septicaemia</td>
<td>Peritonitis, immunoblastic lymphoma</td>
</tr>
<tr>
<td>5</td>
<td>62</td>
<td>F</td>
<td>Arthralgia, night sweats, weight loss, skin rash</td>
<td>Lymphadenopathy, hepatosplenomegaly</td>
<td>23</td>
<td>Pneumonia</td>
<td>CMV, Pneumocystis carinii pneumonia, 'burnt-out' AILD/IBL</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>F</td>
<td>Malaise, dyspnoea</td>
<td>Lymphadenopathy, hepatosplenomegaly</td>
<td>9</td>
<td>Pneumonia</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>53</td>
<td>F</td>
<td>Malaise, night sweats, skin rash</td>
<td>Lymphadenopathy, hepatosplenomegaly</td>
<td>15</td>
<td>Septicaemia, renal failure</td>
<td>Generalised, active AILD/IBL, tubular necrosis</td>
</tr>
</tbody>
</table>

Table 2 Peripheral blood findings at presentation

<table>
<thead>
<tr>
<th>Case</th>
<th>Hb (g/dL)</th>
<th>Retics %</th>
<th>Total WBC*</th>
<th>Neutrophils*</th>
<th>Eosinophils*</th>
<th>Lymphocytes*</th>
<th>Lymphoplasmacytoid*</th>
<th>Coombs' test</th>
<th>Hypergammaglobulinaemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.4</td>
<td>2.4</td>
<td>32.7</td>
<td>29.4</td>
<td>0.3</td>
<td>1.6</td>
<td>0.3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>8.2</td>
<td>11.6</td>
<td>7.4</td>
<td>5.3</td>
<td>0.5</td>
<td>1.0</td>
<td>0.4</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>11.5</td>
<td>2.8</td>
<td>13.2</td>
<td>9.4</td>
<td>1.2</td>
<td>1.4</td>
<td>1.2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>7.8</td>
<td>1.4</td>
<td>15.7</td>
<td>5.0</td>
<td>8.2</td>
<td>0.6</td>
<td>0.3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>5.8</td>
<td>0.2</td>
<td>6.3</td>
<td>5.4</td>
<td>0.3</td>
<td>1.0</td>
<td>0.1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>9.0</td>
<td>1.8</td>
<td>6.2</td>
<td>5.2</td>
<td>0.1</td>
<td>1.5</td>
<td>0.3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>11.8</td>
<td>5.6</td>
<td>19.1</td>
<td>13.4</td>
<td>1.0</td>
<td>1.5</td>
<td>2.5</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

* × 10^9/L
available in four patients and bilateral iliac crest biopsies in two. Overall marrow architecture was within normal limits in two patients but abnormal in four. The marrow of three patients was of increased cellularity (in bilateral biopsies in two cases) due to hyperplasia of haemopoietic elements, especially eosinophils, and a diffuse infiltrate of lymphoplasmacytoid and plasma cells. Interspersed throughout the marrow were spindle-shaped cells resembling fibroblasts and, occasionally, endothelial cells. When sections were stained for reticulin, these changes were shown to be associated with a considerable increase in small and medium-sized fibres, giving the appearances of myelofibrosis (Figure). The marrow trephine biopsy of the remaining patient showed small areas of paratrabecular fibrosis and cellular depletion and a single, indistinct, paratrabecular focus of mononuclear cells and eosinophils.

Discussion

The patients in this study showed most of the clinical features previously described in AILD/IBL (Cullen *et al.*, 1979). These features are also shared by patients with drug hypersensitivity reactions, systemic lupus erythematosus (SLE), and other collagen diseases (Frizzera *et al.*, 1975; Lukes and Tindle, 1975; Budman and Steinberg, 1977). Even the histo-

![Figure](http://jcp.bmj.com/ on April 14, 2017 - Published by group.bmj.com)
logical changes may be found singly or in combination in other conditions. A pleomorphic, immunoblastic reaction in lymph nodes may be a feature of drug hypersensitivity (Saltzstein and Ackerman, 1959) and post-vaccinial lymphadenitis (Hartsock, 1968). Prominent vascular changes are found in graft versus host reactions (Graham, 1974) and malignant lymphomas of centrocytic type (Lennert et al., 1975). Interstitial, PAS-positive material has been reported in lymph nodes involved in delayed hypersensitivity (Willoughby and Spector, 1964) and nodular (follicular) lymphomas (Rosas-Uribe et al., 1973).

Anaemia is present in over 80% of patients with AILD/IBL and a positive Coombs’ test in approximately 50% (Neiman et al., 1978; Pangalis et al., 1978; Cullen et al., 1979). All the patients in the present study were anaemic; five had a positive Coombs’ test, but in only one patient was there convincing evidence of immune haemolysis. The serological findings did not differentiate AILD/IBL from other disorders associated with a positive Coombs’ test (Dacie, 1962; Budman and Steinberg, 1977), although the presence of allo-anti-E in the sera of three patients is unusual.

Changes in peripheral blood neutrophil, eosinophil, and lymphocyte counts are common in AILD/IBL but are known to occur in drug hypersensitivity and inflammatory, collagen-vascular, and Hodgkin’s disease. Atypical mononuclear cells, lymphoplasmacytoid cells, and ‘immunocytes’ in the blood were not mentioned in original descriptions of IBL (Lukes and Tindle, 1975) and were reported in only two of 24 cases of AILD (Frizzera et al., 1975) but have now been described in frequencies of between 32% (Pangalis et al., 1978) and 92% of cases (Flandrin, 1976). The morphology of these cells is not unique but their presence in the blood, together with the other changes, should alert haematologists to the possibility of AILD/IBL.

Bone marrow aspirates reflect, in general, changes that would be anticipated from peripheral blood findings. There may, however, be a discordance between a positive Coombs’ test, reticulocytosis, or erythroid hyperplasia (Flandrin, 1976; Pangalis et al., 1978), indicating multiple causes for any anaemia. Two patients in the present series had a positive Coombs’ test and erythroblastopenia. In one patient erythropoiesis recovered after antibiotic therapy for Gram-negative septicaemia. It has been implied that lymphoplasmacytoid cells or immunocytes in the marrow of patients with AILD indicates extranodal extension of the disease (Pangalis et al., 1978), yet Turesson (1976) has estimated that approximately 2.3×10^9 immunoglobulin containing cells are present in normal marrow, which is the major organ of IgG synthesis in man (McMillan et al., 1972). Rappaport and co-workers have suggested that sections of aspirated marrow fragments and trephine biopsies may show lesions that are as diagnostic of AILD as lymph node histology (Pangalis et al., 1978). These changes are focal, often paratrabeular areas of fibroblast and endothelial cell proliferation associated with haemopoietic depletion. The foci may coalesce, resulting in extensive marrow hypoplasia and fibrosis. The present study confirms that paratrabeular fibrosis and cellular depletion may be features of AILD and are easily differentiated from the distinctive paratrabeular infiltrates of malignant lymphomas of centroblast-centrocytic histology (Brearley and Stansfeld, 1978). There is a remote possibility that, with sections examined in isolation from the relevant clinical and laboratory data, the lesions could be confused with the early marrow changes of Hodgkin’s disease, systemic mastocytosis, or osteitis fibrosa cystica. Three patients had marrow changes that, in our experience, are unique to the AILD/IBL syndrome: obliteration of the normal architecture by haemopoietic proliferation, especially eosinophils, a diffuse infiltrate of lymphoplasmacytoid and plasma cells, and a marked increase in spindle-shaped cells, resulting in an appearance resembling myelofibrosis when sections are stained for reticulin. A single case, with similar marrow changes, has been described by Scully et al. (1978) and was included in the original IBL series of Lukes and Tindle (1975).

The pathogenesis of the marrow lesions, especially the stromal changes, is unknown. The AILD/IBL syndrome may resolve spontaneously or undergo transformation to an immunoblastic, malignant lymphoma (Lukes and Tindle, 1975; Nathwani et al., 1978), but the presence of marrow involvement does not appear to have an adverse effect on prognosis (Pangalis et al., 1978). In the present study it is probably fortuitous that the patients with extensive marrow fibrosis survived longer than those with absent or only minimal changes.

References

Requests for reprints to: Dr R. L. Brearley, Department of Haematology, St Bartholomew’s Hospital, West Smithfield, London EC1A 7BE.
Haematological features of angioimmunoblastic lymphadenopathy with dysproteinaemia.

R L Brearley, J Chapman, M H Cullen, M A Horton, A G Stansfeld and A H Waters

J Clin Pathol 1979 32: 356-360
doi: 10.1136/jcp.32.4.356