Increased interaction of vascular endothelium and leucocytes after administration of antiplatelet serum: role in the developing vascular defect

IREN B. KOVACS¹ AND J. P. CAEN

From the Laboratoire d’Immuno-Hématologie, Hôpital Lariboisière, 2, rue Ambroise Paré, 75475 Paris Cedex 10, France

SUMMARY Antiplatelet serum (APS) induced an increase in the stickiness of white cells which manifests itself in the increase in number of granulocytes rolling along or sticking to the venous endothelium. Lidocaine treatment prevented the increased stickiness of white cells and, at the same time, the microvascular haemorrhage developing after APS. It can be assumed that increased stickiness of white cells after APS may contribute to endothelial damage.

Administration of antiplatelet sera (APS) is the most selective method to eliminate platelets from the circulation for the study of thrombocytopenic conditions. Although the specificity of APS was questioned by the early observation that such sera cross-reacted with a vascular endothelial antigen (Bedson, 1922; Elliott and Whipple, 1940), haemorrhagic vascular defects, which developed after the injection of APS, were attributed to severe thrombocytopenia (Kitchens and Weiss, 1975).

Administration of APS to rats causes a rapid and prolonged disappearance of circulating platelets. However, little consideration has previously been given to the transient leucocytopenia that also occurs after administration of APS and the possible role of granulocytes in the development of the ensuing microvascular lesions. During experiments on the microcirculation of rats treated with APS, a striking increase in the number of marginating (rolling) leucocytes was observed along the vascular wall immediately after the APS infusion. In the present study it is shown that administration of APS significantly increased the adhesive behaviour of leucocytes to venous endothelium. This transient effect may play a significant role in the vascular endothelial damage of small blood vessels that occurs in rats rendered thrombocytopenic by APS.

Material and methods

Antiserum to rat platelets was produced in rabbits.

The serum used in the present study (0.2 ml/rat) regularly produced thrombocytopenia of about 10⁴ platelets per microlitre of blood. The antiserum agglutinated in vitro rat platelets but did not interact with rat lymphocytes and granulocytes. Venous blood samples were taken from the cut rat tail. Total leucocyte counts were obtained by the haemocytometer method, and differential counts were made on 200 cells from the Giemsa-stained smears taken at the same time. Platelets were counted by phase microscopy (Brecher and Cronkite, 1950). Male rats (Sprague-Dawley, CFY strain, 150-180 g body weight) were anaesthetised with pentobarbital sodium (60 mg/kg subcutaneously supplemented with 5 mg/kg intramuscularly at 30-minute intervals).

Mesoappendix microcirculation was prepared according to Zweifach (1965). Microvasculature was observed through a long-distance focusing objective (UM-20, Leitz) and the microscopic field was enlarged electronically (up to x 6000) by a television camera and monitor system. The diameter of the vessels was determined by the calibrated scale of the monitor screen. The microscope was focused sharply on the edge of the blood vessel. Long, straight venules, the diameter ranging between 40 and 55 μm, were selected. The number of 'rolling' and 'sticking' leucocytes was recorded. A granulocyte was considered to be rolling if it was seen moving slowly along the endothelium at a rate less than that of the axial stream of the venule. A granulocyte was considered to be sticking if it was firmly adherent to the endothelial surface or if it stopped rolling for more than 30 seconds during the observation period.

As the handling and the exteriorisation of the mesentery caused an initial increase in the number of
adhesive granulocytes (Atherton and Born, 1972), a 15-minute resting period was necessary for stable blood flow with a small number of adhesive leucocytes. Observations were therefore always started after this resting period. Two types of observation were made:

1. From the microscopic field a 500 μm length of vessel was selected by a shield on the monitor-screen. A line perpendicular to the axis of the vessel was drawn on the screen in the middle of this section. Rolling cells were counted for 1 minute on both sides of the vessel beyond this line. Sticking leucocytes were counted during the 1-minute observation time along both sides of the selected vessel-length (sticking I).

2. A long venule (diameter of vessel 30-70 μm) was selected for observation. The microscopic field on the screen covered an 800 μm length of the vessel. Five microscopic fields (4000 μm) of the straight sections of the venule were analysed by counting sticking leucocytes along both sides of the vessel wall, and these data were expressed as the total sum of sticking cells per 4000 μm vessel-length (sticking II).

Under normal conditions haemorrhagic lesions were never observed in the mesoappendix microvasculature. An attempt was made to quantify the vascular defect developing regularly after 0.2 ml APS by counting haemorrhagic lesions using a low-power objective along the whole mesoappendix preparation 2 hours after the administration of APS.

Lidocaine HCl, when employed, was administered intravenously as a slow infusion via the tail vein by a peristaltic pump at 1.2 ml/h. The infusion was started just after APS had been administered.

Results

The effect of APS on platelet, total white blood cell, and granulocyte counts is shown in Figure 1. While rats remained severely thrombocytopenic for the duration of the experiment (24 hours), granulocyte and leucocyte counts returned to the preinjection level within 3 hours, followed by a moderate leucocytosis and granulocytosis.

Soon after the administration of APS, adhesive granulocyte counts increased significantly (Table 1). Anti-rat plasma rabbit serum or non-immune rabbit serum did not influence rolling and sticking leucocyte counts (results not shown).

While the number of marginating cells decreased with time, the number of sticking white cells remained increased for hours. Lidocaine treatment prevented a drop of granulocyte counts and subsequent

![Fig. 1](http://jcp.bmj.com/)
Fig. 1 Effect of 0.2 ml antiplatelet serum (APS) on platelets, total white cells, and granulocyte counts of peripheral blood. Mean values obtained in six rats:

- - - platelets; - - - total WBC; - - - granulocytes.
leucocytes (mainly granulocytes) from the circulating to the marginated pool appears to be responsible for the drop in peripheral leucocyte counts after APS. The observed increase in the number of marginating and sticking leucocytes indicates an increased endothelial leucocyte interaction.

The adherence of white blood cells to the endothelium of blood vessels is the first step in the leucocyte emigration process and is therefore of great pathological significance (Grant, 1973). Experimental evidence indicates that in the venules, white cell endothelial adherence and emigration per se produce endothelial damage by releasing leucocyte cytotoxic substances (Stewart et al., 1974 and 1977). These foci of vessel wall damage may well serve as a point for red cells to permeate the walls of small vessels during severe thrombocytopenia.

There are two possible causes of the increased leucocyte-endothelium interaction observed after APS:

(a) Sticking of white cells to the vessel wall has been attributed to changes in the endothelium itself (Grant, 1973). The effect of APS can thus be explained by direct damage to endothelial cells (McDonald and Clift, 1976), which makes them sticky for white cells.

(b) Recent evidence indicates that the primary changes may be located in or on the granulocytes themselves (Fehr and Jacob, 1977). It has been shown that granulocyte margination and adherence are complement-dependent functions. APS-induced abrupt granulocytopenia may be the result of complement activation resulting from the aggregation and lysis of platelets (Wautier et al., 1976) after antibody/platelet interaction, or may reflect a direct APS/granulocyte interaction.

In his classical experiments, Bedson (1922) first showed the simultaneous need for both thrombocytopenia and small vessel damage in the production of purpura. As in the case of APS, purpura occurred without the need for additional damage to the

Table 2 Effect of lidocaine on antiplatelet, serum-induced, increased granulocyte adherence and vascular defect

<table>
<thead>
<tr>
<th>Minutes after APS (0-2 ml)</th>
<th>Controls</th>
<th>Lidocaine-treated rats†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of rats</td>
<td>Sticking count II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rolling Sticking 1</td>
</tr>
<tr>
<td>0</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>45</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>60</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>120</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

*P < 0.001 from the respective controls.
†0:1 mg/min for 60 min, started immediately after the administration of APS (total dose = 40 mg/kg/h)
endothelium. APS was considered to be causing direct vascular damage (Ackroyd, 1953) by a hypothetical cross-reaction of antiplatelet antibodies with blood vessel endothelial antigens (Ubatuba et al., 1975).

To study the role of the increased stickiness of white cells after APS in producing endothelial damage, lidocaine was administered to rats. Lidocaine, like other cationic local anaesthetics, has been reported to influence cellular responses to surface stimuli by interfering with the function of microtubules and microfilaments. Electron microscopic examination of drug-treated cells has shown that microtubules and microfilaments appear normal in 'resting' polymorphonuclear leucocytes, but the increase in microtubules normally observed in stimulated cells was not seen after treatment (Goldstein et al., 1977). Lidocaine inhibited white cell sticking in vivo (Giddon and Lindhe, 1972) and prevented the endothelial damaging effect of white cells (Stewart et al., 1974). Our present finding that lidocaine inhibited APS-induced sticking of white cells and simultaneously prevented vascular defects without influencing thrombocytopenia makes it highly probable that the two phenomena are causally related.

From the present study the following conclusions can be reached: APS-induced increased stickiness of white cells contributes to or plays a decisive role in the endothelial damage developing later in this condition. Although peripheral white cell counts are restored within a few hours, mainly by cells coming from the bone marrow reserve pool, the vascular wall damage effect is long-lasting. For this reason, the presence of a pathological reaction (eg, inflammation) during APS-induced severe thrombocytopenia does not necessarily mean that platelets are not involved in this process (Giddon and Lindhe, 1972). In addition to primary haemostatic functions, platelets are assumed to be involved as inflammatory cells in the pathogenesis of some diseases (Nachman, 1973), increasing the permeability of endothelium during cellular passage.

As such inflammatory endothelial changes are
Increased interaction of vascular endothelium and leucocytes after administration of antiplatelet serum

found after APS with relatively few platelets in the circulation, the importance of platelets in initiating endothelial damage cannot be studied properly under APS-induced thrombocytopenic conditions.

One of us (IBK) was in receipt of a post-doctoral fellowship. Support from the Fondation pour la Recherche Médicale, France, during the final stages is gratefully acknowledged. The help of W. Nicholls in preparing the manuscript is acknowledged.

References

Requests for reprints to: Professor J. P. Caen, Hôpital Lariboisière, Laboratoire d'Immunologie-Hématoxiologie, 2 rue A. Paré, 75475 Paris Cedex 10, France.
Increased interaction of vascular endothelium and leucocytes after administration of antiplatelet serum: role in the developing vascular defect.

I B Kovacs and J P Caen

doi: 10.1136/jcp.32.5.445

Updated information and services can be found at: http://jcp.bmj.com/content/32/5/445

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/