Use and interpretation of Schlichter’s test on
Haemophilus influenzae:
Relation of in vitro to in vivo results for cefamandole

E. YOURASSOWSKY, M. P. VAN DER LINDEN, AND E. SCHOUTENTS

From the Hôpital Universitaire Brugmann, Service de Biologie Clinique,
Avenue J.-J. Crocq 1, 1020 Brussels, Belgium

SUMMARY When Haemophilus influenzae infections are treated by an antibiotic acting on the
bacterial wall, the adequacy of antimicrobial therapy can be assessed by Schlichter’s test. This test
may be carried out using Mueller Hinton broth (or Mueller Hinton broth with 50% pooled serum
and a supplement of Ca++ and Mg++) supplemented with Fildes’ enrichment and an inoculum
adjusted to the 0.5 McFarland turbidity standard diluted 200×. However, correct reading of end
points can be obtained only by phase contrast microscopic examination, which allows the establish-
ment of good correlation between the in vitro and in vivo findings. In patients with lung infections
successfully treated with cefamandole, the presence of spheroplasts in samples derived from
Schlichter’s tests correlates well with clinical improvement and eradication of the pathogenic
organism checked by transtracheal aspiration.

The serum dilution test of Schlichter et al. (1949) is a
method for the direct measurement of the anti-
microbial activity of a patient’s serum during anti-
microbial therapy against the specific organism
isolated from the infection. This method, which is
being standardised according to Washington (1974),
Stratton and Reller (1977), and Reller and Stratton
(1977), is related to the measurement of antibiotic
sensitivity by the broth dilution method. The
difficulties of this method in testing the genus
Haemophilus are well known, as pointed out by
Bottone et al. (1976), Gray et al. (1977), Marks and
Weinmaster (1975), Roberts et al. (1974), Sykes et al.
(1977), and Thornsberry and Kirven (1974):

1. The presence of slight turbidity, due to the
formation of spheroplasts, makes reading difficult.
2. The presence of viable entities on replating after
18 hours frequently occurs when the inoculum
reaches 10^6 colony-forming units per ml. (3) The
culture medium strongly influences the results.

In the present work Schlichter’s tests were carried
out on the sera of five patients treated with cefamandole
for severe lung infection with Haemophilus influenzae. The object of the study was to choose the
best criteria for reading the tests so as to give good
correlation between in vitro and in vivo results.

Received for publication 15 March 1979

Material and methods

CLINICAL STUDY
Five patients suffering from lung infection (severe
exacerbation of chronic bronchitis) were included in
a prospective study for the clinical and microbiolog-
ical evaluation of cefamandole. Two grams of
cefamandole nafate was diluted in 100 ml of 5%
deretox in water and perfused intravenously over 30
minutes six-hourly for five to seven days.

In addition to daily clinical examination, the
progress of the temperature curve and chest radi-
ographs were used to evaluate the efficiency of the
treatment.

MICROBIOLOGICAL STUDY
Before antibiotic therapy, the pathogenic agent was
isolated by transtracheal aspiration according to the
technique of Kalinske et al. (1967), replacing physio-
logical saline by Ringer’s lactate. A second trans-
tracheal aspiration was performed after seven days’
treatment.

The determination of minimum inhibitory con-
centrations (MIC) was carried out by agar dilution
on Mueller Hinton agar with the addition of 5% Fildes’ enrichment (Difco) according to the method
of Steers et al. (1959). Incubation was for 24 hours
at 37°C in 10% CO2. The beta-lactamase was detected

956
by using the chromogenic compound Glaxo 87/312, as described by O’Callaghan et al. (1972).

The concentration of cefamandole in blood was assayed at the peak and trough by the technique of Bennett et al. (1966) using cefamandole lithium as reference standard.

Determination of the inhibitory and bactericidal activities of the peak and trough serum samples (Schlichter’s test) were first carried out in the routine laboratory. The patients’ sera were diluted with Mueller Hinton broth (MHB) containing 5% Fildes’ enrichment (Difco). Plastic plates (Microtiter, U-tubes, Cooke Engineering Co) were used with wells that contained 0.05 ml of a twofold dilution of the serum to be tested. The inoculum consisted of 0.05 ml of a 24-hour culture adjusted to a 0.5 McFarland turbidity standard and diluted 1:200. Incubation was for 18 hours at 37°C in 10% CO2. The instructions used by the routine laboratory recommend as the limit of inhibitory activity the highest dilution with no visible growth at the bottom of the wells examined with a magnifying glass, and as the limit of bactericidal activity the absence of cultivable bacteria on spot subculture of 0.05 ml.

The tests of bactericidal activity were repeated (a) using the same medium as before (MHB + Fildes), (b) using Mueller Hinton broth enriched with Ca++ (50 mg/l) and Mg++ (20 mg/l) combined with pooled human serum (which had been inactivated by heating at 50°C for 30 minutes) in a 1:1 ratio, as recommended by Stratton and Reller (1977). This medium (MHB-S/HS) was also supplemented to a concentration of 5% Fildes’ enrichment (Difco) to ensure good growth of haemophilus.

Incubation was for 18 hours in 10% CO2. The subcultures for measurement of bactericidal activity were made by subculturing samples of 0.05 ml onto the surface of a 9 cm plate containing Mueller Hinton agar with the addition of 5% Fildes’ enrichment (Difco). The colony counts were made after 48 hours’ incubation at 37°C in 10% CO2. Samples of each well were also examined after 18 hours’ incubation by phase contrast microscopy to obtain evidence of morphological change, particularly the transformation of bacillary forms to spheroplasts.

Results

As a result of this cefamandole therapy, all the patients improved clinically, as indicated by a fall in temperature, reduction of sputum volume, and improvement of the radiological picture.

In all patients, direct examination of the initial aspirates showed numerous Gram-negative coccobacilli surrounded by numerous polymorphonuclear neutrophils. Dense cultures of *H. influenzae* were obtained. The MICs of these strains were all at or within one doubling dilution of 0.2 µg/ml. No strain produced beta-lactamase. After seven days' treatment with cefamandole, transtracheal aspiration no longer showed Gram-negative coccobacilli by direct examination and on culture.

The concentrations of cefamandole in the serum samples submitted to Schlichter’s test were >100 µg/ml at the peak (mean 161 µg/ml) and >10 µg/ml at the trough (mean 16 µg/ml). However, the Schlichter’s tests carried out and interpreted by the routine laboratory were initially recorded as 'absence of inhibitory activity' because of a haziness observed at the bottom of the wells. The persistence of cultivable bacteria in the spot subculture onto solid medium justified the comment 'absence of bactericidal activity'.

Results of the Schlichter’s tests carried out on two different sera containing, respectively, 100 µg/ml (sample A) and 10 µg/ml (sample B) of cefamandole, when adopting the criteria of evaluation recommended by Bottone et al. (1976) for the determination of MIC end points, are presented in Tables 1 and 2 (which follow the data presentation of these authors). The visual observation of microbial growth in all the wells, including those containing the highest concentrations of antibiotic, corresponded to microbial forms of great variety. Spheroplasts were present in the sample containing 100 µg/ml (sample A) in a dilution ranging from 1:1

Table 1 Results obtained by macroscopic and microscopic observations of Schlichter’s test carried out on two sera diluted with Mueller Hinton broth supplemented with 5% Fildes’ enrichment (MHB)

<table>
<thead>
<tr>
<th>Determination</th>
<th>Sample</th>
<th>Tube dilution (MHB)</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of visual clarity</td>
<td>A</td>
<td>'Growth'</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>'Growth'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microscopic morphology</td>
<td>A</td>
<td>Spherical bodies</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Spherical bodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pleomorphic forms</td>
<td>Cocacobacillus</td>
</tr>
<tr>
<td>No. of colonies after subcultures to agar medium</td>
<td>A</td>
<td>3 2 4 12 10 200</td>
<td>Confluent</td>
</tr>
<tr>
<td>B</td>
<td>4 8 10 50 50 50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Samples A and B, respectively, contain 100 µg/ml and 10 µg/ml of cefamandole.
Table 2 Results obtained by macroscopic and microscopic observations of Schlichter's test carried out on two sera diluted with Mueller Hinton broth supplemented with Ca++, Mg++ Fildes' enrichment, and pooled human serum (MHB-S/HS)

<table>
<thead>
<tr>
<th>Determination</th>
<th>Sample</th>
<th>Tube dilution (MHB-S/HSF)</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of visual clarity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>'Growth'</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>'Growth'</td>
<td></td>
</tr>
<tr>
<td>Microscopic morphology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>Spherical bodies</td>
<td>Pleomorphic Coccobacillus forms</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Spherical bodies</td>
<td>Pleomorphic Coccobacillus forms</td>
</tr>
<tr>
<td>No. of colonies after subcultures to agar medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>3 3 5 1 60 60 60 Confluent</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>3 4 2 100 200 60 Confluent</td>
<td></td>
</tr>
</tbody>
</table>

Samples A and B, respectively, contain 100 μg/ml and 10 μg/ml of cefamandole.

to 1:512 when using MHB, and from 1:1 to 1:64 when using MHB-S/HS. For sample B, spheroplasts were noted, respectively, in samples diluted 1:32 and lower and 1:4 and lower. Paralleling the presence of spheroplasts, subcultures onto agar resulted in the development of a small number of colonies even for samples containing the highest concentration of cefamandole. In contrast, subcultures of 0.05 ml of the broths containing pleomorphic or typical coccobacillary forms gave rise to confluent growth.

Discussion

Schlichter's test has been recommended for monitoring severe infections usually caused by staphylococci, streptococci, and various Gram-negative bacteria belonging to the Enterobacteriaceae or non-fermentative groups (Klastersky et al., 1974; Bryan et al., 1975). However, no one has reported the usefulness of this test for assessing the adequacy of antimicrobial therapy of severe H. influenzae infections (pneumonia, meningitis, arthritis, etc). Indeed, many investigators have drawn attention to the marked effects of media and inocula on the activities of beta-lactam antibiotics against this bacterial species (Roberts et al., 1974; Washington, 1974; Washington and Barry, 1974; Sykes et al., 1977). In fact, when testing cell wall-acting antibiotics on H. influenzae by a broth dilution method, MIC end points are difficult to determine by macroscopic examination of the growth milieu because of the frequent observation of a haziness in tubes containing these agents. MBCs are not easier to determine because subculturing the hazy broths often results in the growth of colonies which, at an inoculum of 10⁶ organisms/ml, are more numerous than for most other bacterial species (Washington, 1974).

For the patients treated with cefamandole for severe haemophilus pulmonary infection, Schlichter's tests (the principle of which is closely related to MIC and MBC determinations), when carried out and interpreted by conventional methods, were initially recorded as demonstrating a lack of antibacterial activity.

The discrepancy between, on the one hand, the development of a favourable clinical response, the eradication of the causative organism confirmed by transtracheal aspiration, the MIC of 0.2 μg/ml, the peak blood level of > 100 μg/ml of cefamandole, and, on the other hand, Schlichter's test, asserting no activity, justified the re-evaluation of this test. Only microscopic examination, carried out on the various dilutions of serum, allowed the definition of a level of activity compatible with the observed clinical results. This criterion is applicable both to the MHB medium and to the MHB-S/HS medium recommended by Stratton and Reller (1977) and Reller and Stratton (1977), the loss of activity of cefamandole in this latter medium being four doubling dilutions.

The role of spheroplasts of H. influenzae in pathology is ill defined. Although, for certain authors, this bacterial form can be the origin of relapses (Lapinski and Delle Flakas, 1967), the present study shows that antibiotic concentrations capable of generating them in vitro (Klein and Luginbuhl, 1977) do not prevent the development of a favourable clinical response and the eradication of the pathogenic organisms in vivo.

In conclusion, the criteria of Bottone et al. (1976) (microscopic examination and determination of the level of activity on the basis of the presence of spheroplasts), recommended for the determination of MIC in broth, must be applied to Schlichter's test as the only criteria allowing good correlation between in vitro and in vivo results. This finding could probably be applied to all antibiotics that are active on the cell wall (Thornsberry and Kirven, 1974).

References

Use and interpretation of Schlichter’s test on Haemophilus influenzae

Requests for reprints to: Professor E. Yourassowsky, Hôpital Universitaire Brugmann, Service de Biologie Clinique, Avenue J.-J. Crocq 1, 1020 Brussels, Belgium.

E Yourassowsky, M P van der Linden and E Schoutens

J Clin Pathol 1979 32: 956-959
doi: 10.1136/jcp.32.9.956

Updated information and services can be found at:
http://jcp.bmj.com/content/32/9/956

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/