Letter to the Editor

Detection of rotavirus from faeces by reversed passive haemagglutination method

Rotavirus particles in faeces with gastroenteritis can be detected by electron microscopy (EM) (Bishop et al., 1974), counter-immunoelectro-osmosphoresis (CIEP) (Middleton et al., 1976), or radioimmunoassay (RIA) (Middleton et al., 1977). However, EM requires time and expensive equipment, while the CIEP method is slightly less sensitive than EM. Although the sensitivity of RIA seems the best of all, it also requires elaborate procedures.

We have developed a simple reversed passive haemagglutination (RPHA) method for the detection of human rotavirus using the Nebraska calf diarrhoea virus (NCDV), which is antigenically related to human strains (Kapikian et al., 1974; Matsuno et al., 1977) and can be propagated in cell cultures. The presence of rotavirus in faecal extracts of 94 infants with acute gastroenteritis was sought by both the EM and RPHA methods and results were compared.

Preparation of anti-NCDV IgG sensitised cells was performed as follows. Sheep erythrocytes fixed with 5% glutaraldehyde followed by treatment with tannic acid were coated with guinea-pig anti-NCDV IgG which was purified by affinity chromatography linked with NCDV. Each faecal specimen was prepared for testing as follows: 10% faecal suspensions in phosphate buffered saline (pH 7.2 PBS) were thoroughly mixed using a Teflon homogenizer1. The homogenate was centrifuged at 1500 g for 20 minutes at 4°C. To eliminate non-specific reactions, sheep erythrocytes fixed with glutaraldehyde (25% volume of the supernatant) were added to the supernatant. The mixture was incubated at 37°C for 1 hour, then centrifuged at 1300 g for 10 minutes. The supernatant was used for examination.

The RPHA test was carried out by a microtitration method. Permanent trays with 120 V-shaped wells were used. Serial twofold dilutions of the specimens were made in duplicate using 25 μl loops and a diluent consisting of PBS containing 2% normal rabbit serum and 1% sheep erythroctye stroma. In one dilution series, 25 μl of PBS was added to each well, and in the other the same amount of anti-NCDV (CF titre 1:160) was added to each well. The mixture was incubated for 1 hour at 37°C, and then a 25 μl suspension (0.6%) of erythrocytes coated with anti-NCDV IgG was added to each well. After shaking, the tray was covered and kept at room temperature, and the pattern of agglutination was observed after 1 hour. The EM method was previously described by Bishop et al. (1974). The results are shown in the Table.

Detection of rotavirus from faecal extracts of infants with acute gastroenteritis by reversed passive haemagglutination (RPHA) and electron microscopic (EM) methods

<table>
<thead>
<tr>
<th></th>
<th>RPHA method</th>
<th>EM method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>58*</td>
<td>45</td>
</tr>
<tr>
<td>Negative</td>
<td>36</td>
<td>49</td>
</tr>
<tr>
<td>Total</td>
<td>94</td>
<td>94</td>
</tr>
</tbody>
</table>

*The presence of 75% or more specific reduction of haemagglutination titre by blocking test was regarded as positive.

Although the numbers examined were small, the RPHA method was found to be useful and practical for the detection of rotavirus in faeces. Since human rotavirus and NCDV are not identical viruses, it is possible that some antigenically deviated rotavirus may not be detected by the cross-reaction method with anti-NCDV.

However, no false-negative cases with the RPHA method were found out of 45 cases determined to be rotavirus-positive by the EM method. The advantages of the RPHA method are its simplicity, higher sensitivity compared with the EM method, and the short time taken.

We thank Dr T. Takahashi, The Kitasato Institute, and Dr U. Inaba, National Institute of Animal Health for valuable discussion.

T. SANEKATA
Y. YOSHIDA
K. ODA
Kanagawa Prefectural Public Health Laboratory,
52, Nakao-cho, Asahi-ku,
Yokohama, Japan

References


1Potter-Eluehjem Teflon tissue grinder (cat. no. 1978).
Detection of rotavirus from faeces by reversed passive haemagglutination method.
T Sanekata, Y Yoshida and K Oda

J Clin Pathol 1979 32: 963
doi: 10.1136/jcp.32.9.963

Updated information and services can be found at:
http://jcp.bmj.com/content/32/9/963.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/