Most of the material sediments directly onto the grid, and large clumps of virus are usually easily seen in the first grid square. Almeida and Waterson stated that polio antigen-antibody aggregates require approximately 1 hour of spinning at 15,000 rpm. However, in our study, a large number of virus aggregates were seen after a spinning time of only 5 minutes at 2100 g in a clinical type bench centrifuge, but it is likely that spinning for a full half-hour would be necessary to sediment small clumps of virus into the grids. These aggregates consisted of both empty and core particles, free of cell debris, showing typical electron microscopic antigen-antibody reaction.

A further feature of the technique described is that a quite low concentration of antibody may be used; around four times the neutralising titre is optimal. In addition the positive results obtained from diluted virus suspensions (Table 2) suggest that virus may be detected in cultures of low infective titre. It is important to avoid taking too much sample, otherwise an unacceptable quantity of debris, mostly from tissue culture cells, is deposited on the grid. It is likely that this method could be used satisfactorily for the typing of other viruses.

References

Requests for reprints to: Dr HK Narang, Public Health Laboratory, Institute of Pathology, Newcastle General Hospital, Newcastle upon Tyne NE4 6BE, UK.

A technique avoiding carcinogens for the demonstration of myeloperoxidase in blood and bone marrow smears

BJ LAYCOCK, JA BRITTON, AND JS LILLEYMAN
Department of Haematology, Sheffield Children's Hospital, Western Bank, Sheffield S10 2TH, UK

For the demonstration of myeloperoxidase in leukocytes in haematological smears of blood or bone marrow a widely used current technique is a modification of that of Kaplow where the substrate 3,3 di-amino-benzidine (DAB) is substituted for the original benzidine dihydrochloride. As the recognised carcinogenic properties of benzidine and its derivatives result in their production and distribution becoming increasingly limited, 2,7-fluorenediamine has been used as an alternative substrate, which, while apparently satisfactory in demonstrating the enzyme, is still not free of potential carcinogenicity.

We have adapted a histochemical method which employs pre-mixed p-phenylenediamine and pyrocatechol and which totally avoids the use of known or suspected carcinogens. This technique has been tried before without success, but when modified as we suggest it seems to give perfectly satisfactory results.

Material and methods

Peripheral blood films were obtained from healthy controls, and bone marrow smears were examined from patients with acute leukaemia at diagnosis and in remission. Slides were fixed for 1 minute in 10% formaldehyde in 95% ethanol and washed under running tap water for 2 minutes. They were then
Technical methods

rack-stained for 10 minutes with freshly prepared Hanker-Yates reagent (described by Hanker et al.5 and available from Polysciences Inc, Paul Valley, Industrial Park, Warrington, PA, USA), 0·1% in 0·1 M Tris HCl buffer at pH 7·6, hydrogen peroxide being added to a final concentration of 0·0004% immediately before use. Films were then washed in tap water and counterstained for 40 seconds with Giemsa solution diluted 1:10 in buffered distilled water pH 6·8. The substrate was stored undissolved at 4°C between applications.

Smears so stained were compared for the proportion of peroxidase positive cells with duplicate samples stained using DAB as a substrate in the established method of Kaplow,1 the duplicate studies being applied to five normal blood films and to six bone marrows from patients with acute myeloid leukaemia.

Results

QUALITATIVE

Myeloperoxidase activity was demonstrated by brownish-black granules in the cytoplasm of cells of the myeloid series. Eosinophils were stained strongly and some monocytes showed a distinct, fine granulation. Lymphocytes and lymphoblasts were uniformly negative.

Staining was comparable with simultaneously stained smears where the DAB substrate was used and Auer rods were clearly demonstrated (see Figure). Results were also comparable on fresh or sequestrene samples, and on smears that had been frozen unfixed at —20°C for up to three years.

QUANTITATIVE

Using the Hanker-Yates and DAB substrates, five healthy peripheral blood films were compared for the proportion of peroxidase positive cells out of a 200-cell differential count. In no case did the proportion differ by more than 4·5%.

Six cases of acute myeloid leukaemia were also examined, and the mean proportion of peroxidase positive cells evaluated by two observers each counting 500 blast cells on slides stained by each technique are shown in the Table. From this it will be seen that the technique described is no less sensitive than that using DAB as a substrate.

Discussion

As benzidine is a proven carcinogen, a number of myeloperoxidase methods have been published which offer alternative substrates.1–3,7 Unfortunately, all of these alternatives are also potentially carcinogenic, albeit perhaps less so, but the method we describe

Bone marrow cells from patient TA (see Table) stained by the Hanker-Yates peroxidase technique. Note the prominent Auer rods (arrowed). Original magnification × 1400.
Comparison of primary granule stains in different acute myeloid leukaemias

<table>
<thead>
<tr>
<th>Patient</th>
<th>Type of leukaemia*</th>
<th>% Blasts positive</th>
<th>Sudan Black B</th>
<th>DAB peroxidase</th>
<th>Hanker-Yates peroxidase</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA</td>
<td>M6</td>
<td>56</td>
<td>59</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>RJ</td>
<td>M1</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>RM</td>
<td>M3</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>M3</td>
<td>100</td>
<td>99</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>M2</td>
<td>44</td>
<td>47</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>M1</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

FAB classification

This work was supported by a grant from the Trent Regional Health Authority.

References

Requests for reprints to: Mrs B Jane Laycock, Department of Haematology, The Children’s Hospital, Western Bank, Sheffield S10 2TH, UK.
A technique avoiding carcinogens for the demonstration of myeloperoxidase in blood and bone marrow smears.

B J Laycock, J A Britton and J S Lilleyman

doi: 10.1136/jcp.33.2.194

Updated information and services can be found at: http://jcp.bmj.com/content/33/2/194.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/