Natural inhibitors of fibrinolysis

D COLLEN

From the Centre for Thrombosis and Vascular Research, Department of Medical Research, University of Leuven, Belgium

There are two main types of inhibitors of fibrinolysis: those which inhibit plasmin (plasmin inhibitors or antiplasmins) and those which inhibit the activation of plasminogen (anti-activators). Many substances derived from biological fluids, tissues, plants, or micro-organisms inhibit fibrinolysis. Some active site titrants of serine proteases are potent inhibitors of fibrinolytic enzymes and certain amino-acids such as lysine, 6-aminohexanoic acid, or tranexamic acid inhibit the digestion of fibrin. This review will deal mainly with the natural inhibitors of fibrinolysis occurring in human blood. The properties of the other inhibitors are reviewed elsewhere.1

Inhibitors of plasmin occurring in human blood

Human plasma exerts a very important inhibitory action on plasmin. There are at least five well-defined proteins which inhibit plasmin in a purified system—namely, α2-macroglobulin, α1-antitrypsin, inter-α-trypsin inhibitor, antithrombin III-heparin complex, and C1-esterase inhibitor. The physiological inhibitor of plasmin formed in blood, however, is a relatively recently described plasma protein called α2-antiplasmin.2 This inhibitor was independently identified by three groups3–5 and most probably also by a fourth.6 Upon activation of plasminogen in plasma the formed plasmin is first preferentially bound to α2-antiplasmin. Only upon complete activation of plasminogen (concentration in plasma approximately 1·5 μmol/l), resulting in saturation of the inhibitor (concentration 1 μmol/l), is the excess plasmin neutralised by α2-macroglobulin. In the presence of normal concentrations of these two inhibitors the other plasma protease inhibitors do not play a role in the inactivation of plasmin.

α2-ANTIPLASMIN (THE PHYSIOLOGICAL PLASMIN INHIBITOR)
α2-Antiplasmin is a single chain glycoprotein with a molecular weight of 70 000 containing approximately 13% carbohydrate.4–7 The inhibitor is immunochemically different from the other known plasma protease inhibitors. α2-Antiplasmin forms a very stable 1:1 stoichiometric complex with plasmin, which is devoid of protease or esterase activity.4–5 7 Complex formation occurs by strong interaction between the light-(B)-chain of plasmin and the inhibitor. The physiological role of α2-antiplasmin as an inhibitor of proteases other than plasmin seems negligible.8 9

The reaction between plasmin and α2-antiplasmin proceeds in at least two steps—a very fast reversible second order reaction followed by a slower irreversible first order reaction10 11 and may be represented by

\[
P + A \xrightleftharpoons[k_1]{k_2} PA \xrightarrow{k_4} PA'
\]

The rate constant k1 at pH 7·5 is 3·8 × 107 M−1s−1 and 1·8 × 107 M−1s−1 for the two plasmin forms which have different affinities for lysine-Sepharose.11 This reaction rate is one of the fastest so far described for protein-protein interactions and is one order of magnitude higher than the reaction rate of trypsin with its inhibitors. The dissociation constant of the reversible step is approximately 2 × 10−10 M and the rate constant of the second step 4 × 10−3s−1.11 Plasmin which has 6-aminohexanoic acid11 or lysine10 bound to its lysine-binding sites or substrate bound to its active site reacts only very slowly with α2-antiplasmin. These findings indicate that free lysine-binding sites and a free active site in the plasmin molecule are of great importance for the rate of its reaction with α2-antiplasmin. As discussed further, these interactions are probably of great importance for the regulation of fibrinolysis in vivo.

A structural analysis of the plasmin-α2-antiplasmin complex suggested that the stable complex is formed by a plasmic attack at a specific leucyl-methionyl peptide bond in the COOH-terminal portion of the inhibitor. A strong, probably covalent bond is formed between the active site seryl residue in plasmin and the carbonyl group of this specific leucyl residue in the inhibitor.12

The turnover of 125I-labelled α2-antiplasmin was studied in control subjects and in patients during thrombolytic therapy.13 In the control group α2-antiplasmin had a plasma half life of 2·64 ± 0·32 days and a fractional catabolic rate of 0·53 ± 0·09 of
the plasma pool per day. During thrombolytic therapy the half life shortened to approximately 0.5 days as a result of formation of plasmin-α2-antiplasmin complex. The long half life of the plasmin-α2-antiplasmin complex was confirmed by studying the turnover of the purified complex both before and during thrombolytic therapy in patients with thrombotic disease.

The normal concentration of α2-antiplasmin is between 80% and 120% (mean ± 2 SD) of the value obtained for pooled normal plasma. The concentration of α2-antiplasmin in pooled normal plasma is approximately 1 μmol/l. The concentration may decrease to below 30% in severe cases of liver disease or intravascular coagulation but is normal in patients with cardiovascular, renal, or malignant disease. The inhibitor is temporarily exhausted during thrombolytic therapy with streptokinase when measured enzymatically. Residual antigen may, however, be found immunologically representing complexed or degraded inhibitor, or both. α2-Antiplasmin is a weak acute phase reactant. Possibly some of the α2-antiplasmin in plasma is inactive.

α2-ANTIPLASMIN AND REGULATION OF FIBRINOLYSIS

Physiological fibrinolysis appears to be regulated and controlled by specific molecular interactions between plasminogen activator and fibrin, between plasminogen and fibrin, and between plasmin and α2-antiplasmin.

An important property of the blood-vascular-tissue type of plasminogen activator is its high affinity for fibrin, which has been used for its isolation. Tissue activator is a relatively poor plasminogen activator in pure systems but fibrin strikingly stimulates the activation.

Human plasminogen and plasmin contain structures, known as lysine-binding sites, which are responsible for their interaction not only with amino-acids such as lysine or 6-aminohexanoic acid but also with fibrin and with antiplasmin. In purified systems native plasminogen (with NH2-terminal glutamic acid) has a weak affinity for fibrin whereas the partially degraded form of plasminogen (with NH2-terminal lysine) has a much stronger affinity. When whole plasma is clotted approximately 4% of the plasminogen is specifically bound to fibrin through its lysine-binding sites. The rapidity of the plasmin-α2-antiplasmin reaction is strongly dependent on the availability of free lysine-binding sites and active site in the enzyme. At a concentration of 1 μmol/l of α2-antiplasmin (the normal plasma concentration) the half life of small amounts of free plasmin can be calculated to be about 100 ms. Plasmin with occupied lysine-binding sites and active site, however, would react at least 100 times slower and have a half life of the order of magnitude of 10 s.

Thus fibrinolysis in vivo seems to be regulated at two levels: (1) efficient activation at the fibrin surface of fibrin-bound plasminogen by fibrin-bound plasminogen activator, and (2) degradation of fibrin by fibrin-bound plasmin which is protected from rapid inactivation by α2-antiplasmin since it has both its lysine-binding sites and active site occupied. Since the fibrin-bound plasmin has an estimated half life of about 10 s effective clot dissolution in vivo would also seem to require a continuous replacement at the fibrin surface of inactivated plasmin molecules (complexed with α2-antiplasmin) by plasminogen molecules.

Several lines of evidence indicate that this model for the regulation of fibrinolysis, which was constructed mainly on the basis of molecular interactions which were demonstrated in purified systems, is also operative in vivo.

α2-MACROGLOBULIN

α2-Macroglobulin represents the slower reacting plasmin inhibitor of plasma. Its role seems to be to inactivate plasmin formed in excess of the inhibitory capacity of α2-antiplasmin. Indeed, when the plasma plasminogen (concentration approximately 1·5 μmol/l) is activated the formed plasmin is initially primarily bound to α2-antiplasmin (concentration approximately 1 μmol/l) until after its saturation. Excess plasmin is neutralised by α2-macroglobulin. A number of reviews on the physiology and biochemistry of α2-macroglobulin have recently appeared.

OTHER PLASMA PROTEASE INHIBITORS

There are at least three plasma protease inhibitors in addition to α2-antiplasmin and α2-macroglobulin that inhibit plasmin in purified systems. These are α1-antitrypsin, antithrombin III, and Cl-inactivator. Inter-α-trypsin inhibitor is a polyvalent inhibitor and probably also reacts to some extent with plasmin. In the presence of normal concentrations of α2-antiplasmin and α2-macroglobulin, however, none of these inhibitors play a role in the neutralisation of plasmin formed in the blood.

Purified antithrombin III is a progressive, time-dependent inhibitor of purified plasmin. Heparin accelerates the rate of this reaction 50 to 100 fold. On the basis of these findings it has been suggested that antithrombin-heparin complex may be a major inhibitor of in vivo fibrinolysis. The role of antithrombin III-heparin complex as an inhibitor of plasmin formed in plasma has been re-evaluated.
In the absence of heparin and after complete activation of the plasma plasminogen about 1% of the formed plasmin binds to antithrombin III. In the presence of therapeutic concentrations of heparin (1-2 IU/ml plasma) this value increased to 2-5% both in vitro and in vivo. These data suggest that the antithrombin III-heparin complex plays a very limited role in the inactivation of plasmin.

PLASMIN INHIBITORS FROM PLATELETS

Johnson and Schneider reported on an antiplasmin activity of bovine platelets which accounted for a major part of the antiplasmin of bovine blood. In human blood, however, the platelets contributed only 1-3% of the antiplasmin activity. The platelet contribution to the total antiplasmin activity of whole human blood is therefore probably small.

Antiplasmin materials in platelets have, however, been characterised to some extent. McDonagh et al. found two antiplasmin activities, one of which was platelet factor XIII and the other one was eluted earlier on Sephadex G-200. Ganguly et al. described low molecular weight antiplasmins, which were dialysable in extracts of human platelets. All these plasmin inhibitors are at present poorly characterised.

Inhibitors of plasminogen activation in human blood

The existence in blood of physiological inhibitors to the activation of plasminogen has been much disputed. The demonstration of activation inhibitors in plasma is indeed hampered by two obstacles. Firstly, it is very difficult to measure antiactivator activity in the presence of antiplasmins. Antiactivator activity may, however, be demonstrated in the following ways: complex formation between activator and antiactivator, inhibition of activator-catalysed hydrolysis of low molecular weight substrates, and inhibition of cleavage of the internal peptide bond in plasminogen. Secondly, the various protease inhibitors in plasma may each have some affinity for plasminogen activators and in concert confer some inhibitory activity to the plasma without actually being specific inhibitors. Despite these difficulties it seems, however, that plasma contains components which act or may act as inhibitors of plasminogen activation. But the physiological role of most of these inhibitors is unknown.

Plasminogen activation may occur by three different pathways: an intrinsic or humoral pathway in which all participating components are present in precursor form in the blood, an extrinsic pathway in which the activator originates from tissues or from the vessel wall and is released into the blood by certain stimuli or trauma, and an exogenous pathway in which the activating substances streptokinase or urokinase may be infused for therapeutic purposes. All plasminogen activators studied so far exert their action through hydrolysis of the Arg 560-Val 561 bond in plasminogen.

Intrinsic activation of plasminogen may occur by one or more pathways involving factor XII (Hageman factor), prekallikrein (Fletcher factor), high molecular weight kininogen (Fitzgerald factor), and possibly other components. However, the exact mechanism of this activation as well as its biological role remain unknown.

The plasminogen activator found in blood represents released vascular plasminogen activator, and these activators are similar or identical to the tissue activator but different from urokinase.

The physiological importance of extrinsic plasminogen activators has been inferred from the association between low blood fibrinolytic activity and thrombotic or atherosclerotic disease.

INHIBITORS OF INTRINSIC PLASMINOGEN ACTIVATION

Several inhibitors of intrinsic plasminogen activation occur in human plasma, CI-inactivator, an inhibitor of factor XIIa-induced fibrinolysis, heparin-antithrombin III complex, and α2-macroglobulin. Since the physiological role of the intrinsic fibrinolytic pathway is not established the role of these inhibitors in the regulation and control of fibrinolysis thus remains entirely speculative.

INHIBITORS OF EXTRINSIC PLASMINOGEN ACTIVATION

The presence in plasma of inhibitors of extrinsic plasminogen activators forming a complex which dissociates in the presence of fibrin has been postulated already in the 1950s and also in more recent studies. The formation of a reversible activator-activator inhibitor complex which dissociates in the presence of fibrin has been invoked to explain the rapid lysis of fibrin in plasma and the resistance of fibrinogen to degradation by plasmin. The enhancing effect of fibrin on the plasminogen activation may be explained by adsorption of activator and plasminogen to its surface facilitating activation. The evidence for the existence of a specific inhibitor of extrinsic plasminogen activators in plasma, forming a reversible complex, can thus at best be regarded as preliminary.

There is good evidence that a significant amount of extrinsic plasminogen activator released in the blood is cleared in vivo by mechanisms other than neutralisation by plasmatic inhibitors. Indeed, whereas
Natural inhibitors of fibrinolysis

plasminogen activator released in the plasma by nicotinic acid injection in normal subjects has a half life in vivo of approximately 15 min\(^5\)\(^6\) its half life in plasma in vitro is approximately 75 min.\(^5\)\(^8\) as measured with clot lysis assays.

INHIBITORS OF EXOGENOUS PLASMINOGEN ACTIVATION

Human plasma contains antibodies directed against streptokinase, which most probably result from previous infections with beta-haemolytic streptococci. The amount of streptokinase antibodies varies over a wide range among individuals. Verstraete et al.\(^5\)\(^5\) found that 352 000 units of streptokinase were required to neutralise the circulating antibodies in 95\% of a healthy population, but that the individual requirements ranged between 25 000 and 3 000 000 units. Since streptokinase reacts with antibodies and is thereby rendered biochemically inert, sufficient streptokinase must be infused to neutralise the antibodies before fibrinolytic activation is obtained.\(^5\)\(^6\) A few days after streptokinase injection the antistreptokinase titre rises rapidly to 50 to 100 times the preinfusion value and remains high for 4 to 6 months, during which renewed treatment is impracticable. Administration of corticosteroids commonly is used as adjuvant to streptokinase to prevent allergic side reactions. The streptokinase-plasmin(ogen) activator complex is virtually unreactive towards \(\alpha_{2}\)-antiplasmin.\(^5\)\(^7\)

The mechanism of urokinase inhibition in blood is poorly known. Urokinase-inhibitor assays based on clot lysis are strongly dependent on the presence of plasmin inhibitors and are therefore in no way specific. Assayed with clot lysis methods the half life of urokinase in vivo is 9 to 16 min but in vitro 27 to 61 min,\(^5\)\(^8\) suggesting that clearing of the enzyme from the blood plays an important role. \(\alpha_{2}\) -Macroglobulin,\(^5\)\(^9\) \(\alpha_{1}\)-antitrypsin,\(^6\)\(^0\) antithrombin III,\(^6\)\(^1\) and \(\alpha_{2}\)-antiplasmin\(^6\) all inhibit urokinase slowly.

INHIBITORS OF PLASMINOGEN ACTIVATION FROM PLATELETS

Platelets contain inhibitors which have been claimed primarily to inhibit fibrinolysis induced by activators.\(^6\)\(^2\)\(^{-}\)\(^6\)\(^5\) Washed platelets, at a concentration which does not inhibit plasmin, are capable of inhibiting plasminogen activators.\(^6\)\(^3\) Murray et al.\(^6\)\(^4\) partially purified an inhibitor of urokinase and tissue activator from human platelets with an estimated molecular weight of 45 000. Moore et al.\(^6\)\(^5\) isolated a fraction possessing antiturokinase activity but no antiplasmin activity, in addition to a fraction containing antiplasmin activity.

The physiological significance of these inhibitors is uncertain. They may have a role in the protection of thrombi from premature lysis.

Synthetic inhibitors of fibrinolysis used for clinical application

Certain amino-acids such as 6-aminohexanoic acid (epsilon-aminocaproic acid, EACA), trans-4-aminomethylcyclohexane-1-carboxylic acid (AMCHA, tranexamic acid), and p-aminoethylbenzoic acid (PAMBA) inhibit fibrinolysis both in vitro and in vivo.\(^6\)\(^6\) The relation between the structure of these substances and their antifibrinolytic effect has been studied in detail.\(^6\)\(^6\) Their clinical usefulness has recently been reviewed.\(^6\)\(^7\) In purified systems, however, these agents greatly accelerate the activation of native plasminogen.\(^6\)\(^8\)\(^6\)\(^9\)

This paradox has recently been elucidated.\(^2\)\(^0\)\(^\text{...}\)\(^7\)\(^0\)\(^\text{...}\)

Native plasminogen (with NH\(_2\)-terminal glutamic acid) is slowly activated by urokinase, whereas partially degraded plasminogen (with NH\(_2\)-terminal lysine, valine, or methionine) is rapidly activated.\(^6\)\(^8\)\(^6\)\(^9\) In the presence of EACA, however, the activation rate of native plasminogen is greatly increased and approaches that of the partially degraded plasminogen. This acceleration has been ascribed to conformational changes in the plasminogen molecule induced by the presence of EACA or removal of the NH\(_2\)-terminal part of the molecule. The conformational change is probably a result of the dissociation between a site in the NH\(_2\)-terminal part (residues\(^45\)\(^\text{...}\)\(^5\)\(^1\)) and a structure in the plasminogen molecule which binds the antifibrinolytic amino acids ('lysine-binding site').\(^7\)\(^1\)\(^7\)\(^2\) The plasminogen molecule contains at least two such lysine-binding sites.\(^7\)\(^4\)\(^7\)\(^3\)\(^7\)\(^4\)

The antifibrinolytic effect of EACA and analogues appears to result from their interference with the binding of plasmin(ogen) to fibrin.\(^5\)\(^6\)\(^\text{...}\)\(^7\)\(^5\)\(^\text{...}\)\(^7\) When whole plasma is clotted, approximately 4\% of the plasminogen is specifically bound to fibrin through its lysine-binding sites, and this interaction is abolished by EACA.\(^7\)\(^7\) The specific affinity between plasminogen and fibrin seems to play an important role in the activation of plasminogen with tissue activator which is also specifically adsorbed to fibrin.\(^2\)\(^0\)\(^7\)\(^5\)

Indeed, fibrin markedly potentiates the activation of plasminogen, but this stimulating effect is completely lost in the presence of EACA.\(^2\)\(^0\)\(^7\)\(^0\) EACA and its more active analogue tranexamic acid have been successfully used to reduce blood loss in essential menorrhagia, prostatectomy, and dental extraction in haemophiliacs.

Physiopathological conditions associated with inhibition of fibrinolysis

A number of physiopathological changes in the blood are associated with a delayed lysis of euglobulin clots or dilute blood clots. These include
pregnancy, hyperlipidemia, smoking, wine, and beer drinking and possibly atherosclerosis. The molecular mechanisms of inhibition of fibrinolysis by these factors is in most instances unknown.

References

34. Steinbach M. Les antiprotéases du plasma. Rev Franç
Natural inhibitors of fibrinolysis

Transfus 1971;14:61-82.

66 Claes J, Vermuyen J. Physicochemical and proteolytic properties of NH2-terminal glutamic acid and NH2-terminal lysine human plasminogen.

72 Wiman B, Wallén P. Structural relationship between ‘glutamic acid’ and ‘lysine’ forms of human plasminogen and their interaction with NH₂-terminal activation peptide as studied by affinity chromatography.

Natural inhibitors of fibrinolysis

D Collen

doi: 10.1136/jcp.33.Suppl_14.24

Updated information and services can be found at:
http://jcp.bmj.com/content/33/Suppl_14/24.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/