Co-trimoxazole sensitivity testing: comparison of separate and combined disk agar diffusion techniques

SGB AMYES AND WA TELFER BRUNTON

From the Department of Bacteriology, The Medical School, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK

SUMMARY Five hundred and seven strains of bacteria isolated from the urine of patients with significant bacteriuria (more than 10^8 colony-forming units per litre) were tested for sensitivity to co-trimoxazole by the agar diffusion technique. Each organism was tested with a combined disk containing trimethoprim and sulphamethoxazole in a primary sensitivity test and, at a standardised inoculum, with both a combined disk and separate disks of trimethoprim and sulphamethoxazole. The results show that combined disk testing does not always indicate the sensitivity patterns of the organisms being tested.

Since its introduction in 1968, co-trimoxazole has become widely used for the treatment of respiratory, gastrointestinal, and urinary tract infections. Despite the popularity of this preparation, it is a matter of continuing debate whether synergism between the components, trimethoprim and sulphamethoxazole, is of importance in vivo. In the laboratory, sensitivity testing of co-trimoxazole has been the subject of much controversy. Some workers believe that synergy may be important and insist that sensitivity testing by the agar diffusion technique should be performed with separate disks so that synergy can be demonstrated.

On the other hand, primary single disk testing, with an inoculum that has not been standardised, is more convenient and produces a more rapid result. However, by this method information cannot be gained about the sensitivity of the test organism to the individual components of co-trimoxazole or about the occurrence of synergy.

In this study we examine the performance of a single combined disk in a primary sensitivity test. The combined disk contained trimethoprim and sulphamethoxazole in a ratio of 1:20, as is used in some routine laboratories. These results are compared with those obtained in tests with separate disks of trimethoprim and sulphamethoxazole and a standardised inoculum; in the latter tests, the potency of the sulphonamide disk was amended to take account of the antagonism between the two drugs on laboratory media as described by Amyes.

Material and methods

Specimens of urine were submitted in sterile 30 ml plastic containers (Sterilin, Middx, UK) from patients under the care of clinicians in the Royal Infirmary of Edinburgh or of local general practitioners. A maximum of four hours was permitted between voiding of the sample and its processing in the laboratory.

The specimens were cultured by the blotting paper-strip method on to MacConkey Agar (Oxoid CM7B, Basingstoke, Hants, UK) and a 'combined' disk containing 1 μg trimethoprim and 20 μg sulphamethoxazole (Mast Laboratories, Liverpool, UK) was applied to the plate; this was the primary sensitivity test. With each batch of specimens processed in this way a control plate of DST agar was flood-seeded with a sensitive Escherichia coli NCTC 10418 strain (about 10^6 colony-forming units (cfu/ml)) and allowed to dry, and a combined disk containing 1 μg trimethoprim and 20 μg sulphamethoxazole was applied to the agar surface. The test and control plates were read after overnight incubation at 37°C. The organisms were classified as sensitive if they gave a zone of sensitivity around the disk equal to or greater than that found in the

Accepted for publication 14 July 1980
The types of organism isolated in significant numbers from midstream urine samples from 1 July 1978 to 30 September 1978 are shown in Table 1. Of the 507 organisms tested, 435 (86%) were classified as sensitive to the combined disk used in the primary sensitivity test (Table 2). However, the results show that the true sensitivity patterns of these organisms varied considerably. Of the 346 E. coli isolates, 180 (52%) found to be sensitive to the combined disk on primary testing were sensitive to both drugs and synergy could be demonstrated; 111 (32%) were sensitive to only one of the two drugs, although synergy could still be demonstrated; and 55 (16%) were either resistant to both drugs but showed demonstrable synergy, or were resistant to one drug without demonstrable synergy. Of the 33 Proteus spp. isolated, 15 (45%) were sensitive to only one of the drugs but synergy was demonstrable, and 9 (3%) were resistant to both drugs although synergy could be demonstrated.

Of the 435 organisms judged to be sensitive in the primary sensitivity test, 229 (53%) were found on secondary testing to be fully sensitive to both drugs with concomitant demonstration of synergy; 140 (32%) were sensitive to one of the drugs and synergy was demonstrated, and 66 (15%) were either resistant to one drug with no demonstrable synergy or were resistant to both drugs but with demonstrable synergy.

On primary sensitivity testing, 72 of the 507 isolates (14%) were shown to be resistant to the combined disk. The results (Table 3) show that there was some variation in resistance patterns. Of the 29 E. coli isolates shown to be resistant by primary sensitivity testing 22 (76%) were resistant to both drugs and synergy could not be demonstrated. However, 5 (17%) of these 29 isolates were sensitive to one drug of the combination and
Co-trimoxazole sensitivity testing

Table 3 Results of secondary double disk sensitivity testing of strains adjudged resistant to co-trimoxazole on primary single disk testing

<table>
<thead>
<tr>
<th>Organism (No. of isolates)</th>
<th>No. of isolates with sensitivity graded as:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T+ S+ Syn</td>
</tr>
<tr>
<td>Escherichia coli (29)</td>
<td>0</td>
</tr>
<tr>
<td>Proteus spp. (15)</td>
<td>3</td>
</tr>
<tr>
<td>Klebsiella spp. (18)</td>
<td>1</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa (5)</td>
<td>0</td>
</tr>
<tr>
<td>Staphylococcus epidermidis (1)</td>
<td>0</td>
</tr>
<tr>
<td>β-haemolytic streptococcus (2)</td>
<td>0</td>
</tr>
<tr>
<td>Streptococcus faecalis (2)</td>
<td>1</td>
</tr>
<tr>
<td>Total (72)</td>
<td>5</td>
</tr>
</tbody>
</table>

T+ = trimethoprim sensitive; T− = trimethoprim resistant; S+ = sulphamethoxazole sensitive; S− = sulphamethoxazole resistant; Syn = synergy demonstrated in vitro.

synergy was demonstrated. Of the 15 Proteus spp. found to be resistant on primary testing, 11 (73%) were resistant to both drugs and synergy was not found, but four were sensitive to one or both drugs and synergy could be shown. The Klebsiella spp. isolated showed a very similar pattern, 4 of the 15 apparently resistant strains being sensitive to at least one drug and synergy being present.

Of the 72 strains that were resistant in the primary sensitivity test 55 (76%) were resistant to both drugs and synergy was not shown; 2 (3%) were resistant to one drug and synergy was not shown; and 15 (21%) were sensitive to at least one drug and synergy could be demonstrated.

The standard inoculum of each isolate was also examined with a single disk containing 1 µg trimethoprim and 50 µg sulphamethoxazole. Only those organisms resistant to both components and their combined synergistic action were not susceptible to this disk. Of the 452 organsms that were sensitive to this disk 68 (15%) were either resistant to both components but showed synergy, or were sensitive to one component in the absence of demonstrable synergy. Of these 452 strains 41 (9%) were resistant to trimethoprim.

Discussion

The comparison of different methods for assessing the sensitivity of bacteria to co-trimoxazole or its components is complicated by the lack of agreement about the criteria that should be used to indicate 'sensitivity'. There is much controversy as to whether the synergy between trimethoprim and sulphamethoxazole, which can be demonstrated easily in vitro, is important in vivo.

 Indeed, there is a growing belief that the efficacy of co-trimoxazole often originates from the trimethoprim component alone and that, as long as the organism is trimethoprim-sensitive, the combination may be given regardless of whether synergy or sulphamethoxazole sensitivity can be demonstrated. On these criteria, 396 (91%) of the 435 strains shown to be sensitive by primary testing (Table 2) were sensitive to trimethoprim. In other words, 9% of the strains that were classified as sensitive as a result of the primary sensitivity test were not in fact sensitive to trimethoprim. More specifically, on these criteria 7% of E. coli strains, and as many as 36% of Proteus sp. would have been inappropriately reported after primary combined disk testing.

Of the 72 organisms shown to be resistant by primary sensitivity testing 57 (79%) were found to be resistant to trimethoprim (Table 3) and 15 (21%) would have been inappropriately reported as 'resistant' on primary testing if trimethoprim sensitivity is the criterion for drug administration. Overall, by this criterion, 15 (3%) of the 507 organisms tested were incorrectly reported to be resistant to co-trimoxazole by primary testing. A further 17 organisms (3%), which were resistant to both trimethoprim and sulphamethoxazole on secondary testing, were reported as sensitive on primary testing because of in vitro synergy.

If synergy is important, co-trimoxazole therapy might be considered if an organism is sensitive to at least one of the components and in vitro synergy can be demonstrated.

Of the 435 organisms shown to be sensitive in the primary sensitivity test 369 (85%) were sensitive to at least one drug with demonstrable synergy; however, 49 (11%) were sensitive to only one drug and synergy could not be shown. The latter organisms, although shown to be sensitive by the single disk test, would not be regarded as suitable for co-trimoxazole therapy by the above criterion.

Similarly, 57 (79%) of the 72 organisms shown to be resistant in the primary sensitivity test were either
resistant to both drugs or resistant to one drug without synergy. Thus 21% of the organisms shown to be resistant would have been regarded as susceptible to co-trimoxazole by the above criterion. Inappropriate sensitivities by primary testing were less of a problem with *Klebsiella* spp. and *Proteus* spp.

Finally, it might be argued that an organism should be regarded as sensitive to co-trimoxazole if it is sensitive to either component, regardless of whether or not *in vitro* synergy is demonstrable. By this criterion no organisms would have been falsely reported as sensitive by the primary combined disk test, but 3% of the organisms tested were wrongly judged to be resistant.

The results show that not only is a standardised inoculum of paramount importance, but so is the use of separate disks in co-trimoxazole sensitivity testing. In addition, the use of a combined disk in a secondary sensitivity test has no advantage over the use of a similar disk in a primary sensitivity test. The advantages of speed and convenience, which primary combined disk testing has over secondary methods with two disks and a standardised inoculum, must be carefully weighed against the risk of obtaining misleading results or of assuming sensitivity to the combination of trimethoprim and sulphamethoxazole when the organism being tested may be sensitive to only one agent or to neither. At the expense of some delay, which in urinary tract infections may be acceptable, the double disk technique provides useful additional information on the sensitivities of individual organisms to the component drugs.

Although sulphonamides are still used for the treatment of urinary tract infections, their action is bacteriostatic. Trimethoprim, on the other hand, can be shown to exert a bactericidal effect *in vitro* at concentrations that can be readily achieved in urine. If an organism is resistant to sulphamethoxazole, or if synergy should not be important *in vivo*, then clearly treatment with a redundant agent, which is not free from serious side effects, is undesirable. In such circumstances, treatment with an alternative agent, or with trimethoprim alone, seems more rational.

Whatever viewpoint is taken, the double disk technique offers to the microbiologist additional information upon which appropriate treatment can be given.

We thank Catherine McMillan, Gordon Fleming, and Susan McDonald for their assistance. We also thank the Scottish Home and Health Department for their financial support of some of this work (grant no. K/MRS/50/C163).

References

Requests for reprints to: Dr WA Telfer Brunton, Department of Bacteriology, The Medical School, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG.
Co-trimoxazole sensitivity testing: comparison of separate and combined disk agar diffusion techniques.

S G Amyes and W A Telfer Brunton

doi: 10.1136/jcp.34.2.199

Updated information and services can be found at: http://jcp.bmj.com/content/34/2/199

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/