Urinary excretion kinetics of hydroxyethyl starch 350/0·60 in normovolaemic man

JOHN MILTON MISHLER,* COLIN R RICKETTS,† AND EDWARD J PARKHOUSE‡

From the *Medizinische Universitätsklinik Köln, Köln, Bundesrepublik Deutschland and the †MRC Industrial Injuries and Burns Unit, Birmingham Accident Hospital, Birmingham, UK

SUMMARY Rates of urinary excretion concomitant with the molecular size distribution of filtered polymer fragments were determined in five normovolaemic men dosed with 30 g/m² BSA of a species of HES (HES 350/0·60) possessing a M_w of 350 000 combined with an MS of 0·60. Approximately 13% of the total injected dose of HES 350/0·60 was excreted in urine 1 hour after dosing, and 45% by 72 hours. Gel filtration on Sepharose CL-4B revealed that aliquots of urine collected 1 hour after injection contained polymer fragments of HES 350/0·60 with values of K_av ranging between 0·88 and 0·84, and possessed a Stokes radius ($r = 32\text{Å}$) similar to that of Dextran 20 (M_w 22 700). Polymer fragments of HES 350/0·60 excreted 6 to 48 hours after dosing, however, possessed a K_av ranging between 0·78 and 0·73 with a Stokes radius ($r = 45\text{Å}$) similar to that of Dextran 40 (M_w 41 000). All filtered polymer fragments were less polydisperse relative to both the injected solution (K_av 0·60) and residual material recovered from blood immediately after injection (K_av 0·72). These data support the hypothesis that the excretion of HES 350/0·60 occurs in two distinct phases: a rapid phase of elimination dependent on the M_n of the injected solution, and a slower phase dependent on the MS (degree of resistance to α-amylase attack). This study, in conjunction with our previous investigation of the changes in circulating HES 350/0·60, define the basic differences between clearance and excretion of the dextrans and of the rapidly degraded species of HES. These data are relevant to the utilisation of HES 350/0·60 during centrifugal leucapheresis.

A variety of species of hydroxyethyl starch (HES) has been developed for use in the management of hypovolaemia and as adjuncts to centrifugal leucapheresis.¹⁻³ The ability to alter the intravascular persistence concomitant with H_2O-binding potential of this glyogen-like amylopectin is primarily a function of the degree of MS on the parent molecule but is also partially dependent on a sub-population of molecules contained in the injected solution and characterised by the M_n.⁴ After an initial rapid clearance of colloid from blood after dosing, the major portion of the injected material is hydrolysed to smaller polymer fragments⁵⁻⁶ which are subsequently filtered at the glomerulus,⁷⁻⁸ and a portion of the total administered dose is taken up by the reticuloendothelial system.⁹ Changes occurring in the molecular-size composition of circulating residual HES remaining in the intravascular space after dosing has been described in detail.⁵⁻¹⁰ The size distribution of polymer fragments of HES excreted in urine as a function of time after the injection, however, has not been well characterised. The present study, therefore, is an investigation of the characteristics of the size composition of the polymer fragments excreted over a long-term period of observation in normal man dosed with

Abbreviations:
Molar hydroxyethyl group substitution on the parent amylopectin molecule (MS). This may be calculated as:

$$MS = \frac{W_H}{1 - W_H} \times \frac{162}{44},$$

where W_H is the weight-fraction of hydroxyethyl groups in the polymer.

Number average molecular weight (M_n) and weight average molecular weight (M_w). These terms may be calculated as:

$$M_\text{n} = \frac{\Sigma w_i}{M_i}$$

$M_\text{w} = \Sigma w_i M_i,$

where w_i is the weight-fraction of the species of molecular weight M_i.

Accepted for publication 3 September 1980
Material and methods

SUBJECTS AND PROCEDURES
The study group comprised five normovolaemic men (aged 20-21) of good health. Their body surface areas (BSA) ranged from 1.80 to 2.01 m², which corresponded approximately to whole blood volumes of 4500 to 5035 ml. The experiment was thoroughly explained to each of the test subjects and their consent was obtained.

A standardised dose (30g/m² BSA) of 6% (w/v) solution of HES 350/0-60* suspended in 0.9% isotonic saline was infused through a 19-gauge cannula inserted in a forearm vein over a 52- to 67-minute period. The average rate of injection was 0.24 ± 0.02 SD ml/kg per min. The methods for the collection of samples of whole blood after injection and the subsequent preparation of sera have been described previously.6 Aliquots of urine spontaneously voided by each test subject were collected in the intervals 0-1, 1-3, 3-6, 6-12, 12-24, 24-48, and 48-72 hours after dosing. All samples of collected urine were centrifuged at 3000 g (Sorvall RC-2B centrifuge, USA) for 20 minutes at 4°C to remove sediment.

LABORATORY DETERMINATIONS
To 1 ml of sediment-free urine collected at various intervals after dosing was added 3 ml of 30% (w/v) potassium hydroxide, and the subsequent admixture was boiled for 1 hour to destroy monosaccharides. After the sample had been cooled, neutralisation was achieved by the addition of 9 ml of 5% (w/v) sulphuric acid. The total quantity of HES 350/0-60 contained in these prepared samples was then determined in triplicate by means of a simplified anthrone technique.11

GEL FILTRATION
Urine collected from two test subjects (A and B) up to 48 hours after injection was concentrated by ultrafiltration and dialysed in Cellophane tubing (diameter 6-2 mm and pore size < 7.2 nm) to remove contaminating salts. The resulting concentrate was applied to a column of Sepharose CL-4B (Pharmacia Fine Chemicals, Sweden) in m/15 sodium phosphate buffer (pH 7.5, one-volume) and 0.9% isotonic saline solution (9-volumes), as previously described.5 A total of 50 mg of HES 350/0-60 material contained in either serum (as previously described9) or urine was utilised at each interval of sampling. An aliquot of urine (containing 100 mg of HES 350/0-60 material) collected from subject B 1 hour after dosing was ultrafiltered and dialysed (as described above) to a volume of 4 ml. A 2 ml (50 mg) portion of this solution was subjected to gel filtration on a column of Sephadex G-200 (Pharmacia Fine Chemicals, Sweden) under the conditions described above. The remaining 2-ml portion was incubated for 18 hours at 37°C with the α-amylase contained in 1 ml of centrifuged human saliva in the presence of sodium azide preservative. The resultant solution was then subjected to gel filtration on Sephadex G-200. The effluent solution collected from both gel columns was continuously monitored by a differential refractometer (Waters Model R4, USA) operating a chart recorder. Both columns were calibrated with Blue Dextran (Mₘ 2 000 000) for Vₒ and sodium iodide for Vₜ. The Sepharose CL-4B column was further calibrated with both Dextran 20 (Mₘ 22 7000, Mₜ 17 000, Mₘ/Mₜ = 1.34) and Dextran 40 (Mₘ 41 000, Mₜ 26 000, Mₘ/Mₜ = 1.58). The Kₐᵥ for each of the peaks eluted from both columns was calculated according to the formula:

\[Kₐᵥ = \frac{Vₑ - Vₒ}{Vₜ - Vₒ} \]

Results

RATE AND OVERALL CUMULATIVE EXCRETION OF HES 350/0-60
In five normovolaemic subjects given a standardised injection of 30 g/m² BSA HES 350/0-60, an average of 7.19 g ± 1.93 SD of this material was excreted in urine 1 hour after injection, which represented the loss of approximately 13% of the total dose administered (Fig. 1). The rate of excretion of HES 350/0-60 diminished thereafter, and by 72 hours after dosing 45% of the initial dose had been voided in urine.

GEL FILTRATION

Sepharose CL-4B
The molecular-size distribution of HES 350/0-60 material excreted in the urine of test subjects A and B up to 1 hour after dosing is displayed in Fig. 2. The molecular composition of HES 350/0-60 material recovered either in serum immediately after injection8 or excreted in urine during the first hour after injection is less polydisperse relative to the
Excreted HES 350/0-60 molecular composition

Fig. 1 (Above) Intravascular survival, expressed as log % at 60 min, in five normal men dosed with an average of 56.6 g ± 2.2 SD of HES 350/0-60. Each point represents the mean of five determinations. The concentration of HES 350/0-60 measured in serum immediately after injection is expressed as 100%. (Below) Rate of urinary HES 350/0-60 excretion (□) concomitant with the overall cumulative excretion (●) is shown for these same five subjects. Each point represents the mean of five determinations. The average rate of excretion of HES 350/0-60 during the first hour after injection was 7.19 g/h ± 1.93 SD. This initial rate of excretion fell to 2.03 g/h ± 0.22, 0.85 ± 0.32, 0.80 ± 0.20, 0.35 ± 0.12, 0.13 ± 0.01, and 0.06 ± 0.01 during the postinfusion intervals 1-3, 3-6, 6-12, 12-24, 24-48, and 48-72 hours, respectively. One hour after injection 12.7% ± 1.9 SD of the total injected dose of HES 350/0-60 appeared in urine. This increased to 19.9% ± 0.4, 24.4 ± 1.0, 31.3 ± 0.9, 37.3 ± 0.7, 42.7 ± 0.8, and 45.2 ± 0.2, at 3, 6, 12, 24, 48, and 72 hours after injection respectively.

injected solution. Filtered HES 350/0-60 polymer fragments recovered up to 1 hour after dosing in subjects A and B possessed a Stokes radius \(r = 32\AA \) similar to that of Dextran 20. Polymer fragments of HES 350/0-60 excreted 6 to 48 hours after injection, however, possessed a \(K_{\text{av}} \) ranging between 0.78 and 0.73 and having a Stokes radius \(r = 45\AA \) similar to that of Dextran 40 (Table).

Sephadex G-200

Comparison of the two elution profiles (Fig. 3) reveals that HES 350/0-60 polymer fragments excreted during the first hour after dosing had not been hydrolysed by serum α-amylase to the maximal possible extent, since subsequent incubation with α-amylase contained in human saliva caused further production of less polydisperse material. This was witnessed by the shift of molecular size distribution toward the low-molecular-weight region of the column.

Discussion

The principal reason underlying the development of HES 350/0-60 was the need to provide a greater rate of colloid clearance from blood than is presently available with the approved long-acting dosage form of HES 450/0-70. Recent concern has been raised about the long-term persistence of HES 450/0-70 during centrifugal leucapheresis, as residual colloid
can be detected in blood 17 weeks after dosing.10, 12 As the usefulness of HES 450/0-70 in decreasing the suspension stability of blood would in most cases be restricted to a period of 2 to 4 hours during the collection of leucocytes, residual colloid remaining in blood after this interval appears to serve no practical purpose. By reducing both the M_w and MS of HES 450/0-70, we had previously demonstrated6 that a reasonable proportion of the initial peak dose of HES 350/0-60 remains 6 hours after injection, but, more importantly, up to 192 hours after dosing this new species of HES is removed from the intravascular space approximately twice as rapidly as HES 450/0-70.6 The greater rate of clearance of HES 350/0-60 from blood appears to be related to both the ‘pattern’ and ‘amount’ of hydroxyethylation incorporated into the parent amylopectin molecule. Effective, sustained retardation of attack of α-amylase implies that attachment of the hydroxyethyl group on any glucose residue within a specific five-unit amylose substrate must deviate from acceptable patterns of substitution.13 As the MS is increased from 0-7 to 2-0, there is a greater likelihood that unfavourable substitutions will occur.14 At these degrees of MS, the frequency of di-, tri-, and tetra-substituted glucose residues is significantly higher. Low degrees of MS (0-43-0-60) probably increase the likelihood that only mono-substitution occurs on individual glucose residues, which facilitates degradation by α-amylase. As a result, a greater rate of clearance is achieved.5, 6

Residual HES material remaining in the intravascular space after dosing is either catabolised by α-amylase to less polydisperse fractions5, 6, 10 capable of being filtered at the glomerulus or taken up by the reticuloendothelial system.9 The overall persistence of any species of HES is dependent on the MS and is somewhat independent of the M_w of the injected solution.4 During the initial hour after dosing, however, the total amount of colloid appearing in urine is an inverse property of a sub-population of small molecules contained in the injected solution and characterised by the M_w.4 The changes in the molecular size distribution of HES 350/0-60 material recovered either in blood immediately after injection (K_{av} 0-72) or voided in urine (K_{av} 0-88-0-84) 1 hour after dosing, relative to the highly disperse injected solution (K_{av} 0-60), clearly demonstrates the rapid removal of these low-molecular-weight polymers (Fig. 2). These small polymer fragments possess a molecular weight below that of the limit of glomerular filtration and appear to be little affected by the action of α-amylase, which is clearly evident from the further change in the molecular-size distribution after incubation with human saliva (Fig. 3). After this phase of rapid clearance from blood (and subsequent appearance in voided urine), however, the rate of colloid excretion is an inverse property of the MS of the injected solution.2, 4, 7 The data thus obtained with HES 350/0-60 further substantiate the hypothesis that the rate of polymer excretion for any given species of HES is influenced by the MS of the injected solution.

The characteristics of the molecular size composition of excreted HES 350/0-60 polymer fragments is also of interest. Previously it was shown that polymer fragments of HES 264/0-43 recovered up to 12 hours after dosing displayed a peak of elution with K_{av} 0-83 when separated on a column of Sepharose CL-4B.13 A similar value of K_{av} (0-88-0-84) was obtained in the present study with HES 350/0-60 material recovered from urine only up to the first hour after dosing (Fig. 2). In the interval 6 to 48 hours after injection, the recovered HES 350/0-60 polymer fragments possessed a K_{av} ranging between 0-78 and 0-73 (Table), which appears to indicate that the limit of glomerular filtration for excretion of HES 350/0-60 polymer fragments is similar to that of a dextran possessing a M_w of 41 000 with a Stokes radius of 45Å.16 Thus, the rate at which polymer fragments of HES 350/0-60 are excreted appears to depend on attainment of a specific molecular weight (or molecular radius) below the threshold of glomerular filtration.

The results of the present investigation of the excretion kinetics of HES 350/0-60, when considered with our previous work on the molecular size distribution changes occurring in the blood of these same subjects,6 clearly defines, for the first time, the
differences between clearance and excretion of the dextrans and of HES. Basically, as a function of time after infusion, the molecular weight of dextran polymers remaining in the intravascular space or excreted in urine become larger rather than smaller. This change in the character of material remaining in blood is the result of a disappearance of the smaller molecules into the extravascular space and across the glomerular membrane into the urine. The urinary excretion of dextran undergoes a similar shift in its molecular weight composition, which reflects that occurring in blood. With the rapidly catabolised species of HES (species of HES with MS of 0·43·0-60) the material remaining in blood becomes smaller with time after infusion. The molecular-size composition of HES 350/0-60 polymer fragments excreted 6 to 48 hours after dosing is of a relatively constant size (Table). (The elution profiles seem to indicate the excretion of successively larger molecules, but we believe these changes to be slight.) Thus these differences in serum persistence and urinary excretion between the dextrans and the rapidly catabolised species of HES reflect two different mechanisms of action.

In conclusion, the rate at which polymer fragments of HES 350/0-60 are excreted in urine appears to be related to the attainment of a specific molecular weight (or molecular radius) in blood (below the glomerular threshold), which in turn is dependent on the MS of the injected solution. The characteristics of the molecular-size composition of excreted polymer fragments appear to differ from those of the dextrans, and the different mechanism by which these fragments are cleared is especially evident in relation to the changes occurring in the residual material remaining in blood. The point to be stressed in this context is that hydroxyethylstarch has a greater influence on appearance of polymer fragments in urine than does molecular weight, which again underlines the basic difference between the dextrans and HES. These data should be relevant to normal donors from whom leucocytes are removed by centrifugal blood cell separators.

Portions of this study were supported by the Alexander von Humboldt-Foundation, the SFB 68 of the Deutsche Forschungsgemeinschaft, and the Medical Research Council. Dr Mishler was an Alexander von Humboldt-Foundation senior research fellow. We thank Kathy White for secretarial assistance.

References

Urinary excretion kinetics of hydroxyethyl starch 350/0.60 in normovolaemic man.
J M Mishler, C R Ricketts and E J Parkhouse

doi: 10.1136/jcp.34.4.361

Updated information and services can be found at:
http://jcp.bmj.com/content/34/4/361

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/