Histological study of the effects of three anti-inflammatory preparations on the gastric mucosa

RLE McIntyre, MS Irani, JPiris

From the Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford

SUMMARY Patients with osteoarthritis were entered into a single-blind trial comparing the effects on the gastric mucosa of a four week course of indomethacin, sulindac and a compound of paracetamol and dextropropoxyphene (Distalgesic). The presence and severity of both acute and chronic gastritis were assessed by histological examination of endoscopic biopsy specimens taken from five standard sites in the stomach of each patient before and at the end of the four week period.

The presence and severity of chronic gastritis was not affected by the treatment in any of the groups. The pattern of acute gastritis was complex, many of the patients having acute inflammatory changes in their initial biopsy specimens. At least one patient in each treatment group developed marked acute gastritis during the treatment period, but a significant overall increase in the severity of these changes was only found in the group treated with sulindac.

A number of anti-inflammatory agents which are not related to corticosteroids have been developed in recent years, and it has been reported that all of them may damage the mucosa of the gastrointestinal tract. One of the first was indomethacin. This has proved to be effective in relieving rheumatic symptoms but it is liable to cause gastric symptoms and to increase the loss of blood from the gastrointestinal tract by an appreciable amount. Attempts have been made to find derivatives of indomethacin equal in anti-inflammatory activity but potentially less damaging to the gastrointestinal mucosa. One such derivative is sulindac which has been found to be much less damaging to the gastrointestinal tract in rats, dogs, and monkeys. Initial clinical experience with sulindac has been encouraging.

The purpose of our study was to compare the effects on the human gastric mucosa of indomethacin, sulindac and a compound of paracetamol and dextropropoxyphene (Distalgesic) in patients with osteoarthritis. Distalgesic was used as a "control" treatment since it was considered unreasonable to expect patients complaining of pain to take dummy tablets, and it is generally believed that this preparation has no gastrointestinal side-effects.

The effect of anti-inflammatory agents on the gut varies from species to species, so that extrapolation of data from one species to another is often misleading. Studies on human subjects are therefore particularly important. Most of the human data on this subject are confined to reports on symptoms of patients participating in therapeutic trials, and studies of gastrointestinal blood loss. Endoscopic studies have been made, but these have relied on the macroscopic appearance of the mucosa which we know to be misleading, at least in the case of chronic gastritis. In our study, endoscopy and endoscopic biopsy were used in every case to assess the effect of the three agents on the gastric mucosa.

Material and methods

Thirty-two patients volunteered for and completed the study having given their informed consent. Initially each was treated with Distalgesic (2 tablets tds) for one week, at the end of which an endoscopic examination was made with an Olympus GIF-K endoscope. Any focal lesions were noted and biopsy specimens taken from five standard sites in the stomach, namely the prepyloric antrum (site 1), the mid-lesser curve (site 2), the mid-greater curve (site 3), high on the lesser curve (site 4), and the fundus (site 5). Each patient was then randomly allocated to one of three groups, taking indomethacin (25 mg tds), sulindac (200 mg bd), or Distalgesic (2 tablets tds) respectively, for four weeks. At the end of this treatment period, a further endoscopic examination was made and biopsy specimens taken as before. The

Accepted for publication 17 December 1980
study was “single-blind”—that is, each patient was aware of which drug he or she was taking, while the investigators were not.

The biopsy specimens were floated off the biopsy forceps into normal saline and transferred on to filter paper. They were then uncurled with a pair of needles and orientated so that the mucosal surface was uppermost. After fixation in formol sublimate solution, they were embedded in wax and 5 μm sections were cut. Two sections from each specimen were stained with haematoxylin and eosin, and periodic acid-Schiff-alcian blue respectively, for histological examination.

Acute and chronic inflammatory changes were regarded as separate conditions and were assessed separately in sections from each specimen. To facilitate analysis of the findings, a numerical grading was ascribed to the degree of gastritis found at each site, one relating to the chronic inflammatory changes and another relating to the acute inflammatory changes.

The degree of chronic gastritis was graded according to a scheme based on a simplified version of the classification proposed by Whitehead et al., which was as follows:

Grade 0 = normal
Grade 1 = chronic superficial gastritis
Grade 2 = mild atrophic gastritis
Grade 3 = moderate atrophic gastritis
Grade 4 = severe atrophic gastritis.

A chronic gastritis index could then be calculated. This is the mean numerical grading ascribed to any group of biopsy sites, multiplied by 25, resulting in a possible range of 0 to 100. For example, the “overall gastritis index” is defined as the mean of the gradings ascribed to the five sites biopsied at one examination multiplied by 25. Similarly, a gastritis index for one standard site could be calculated from a number of patients. For example, the gastritis index for the prepyloric antral site (site 1) in a group of five patients could be calculated as follows:

\[
\text{Gastritis index} = \frac{(1 + 3 + 2 + 1 + 0)}{5} \times 25 = 35.
\]

Acute gastritis was graded as follows:

Grade 0 = no evidence of acute gastritis
Grade 1 = mild acute inflammatory changes (Fig. 1)
Grade 2 = severe acute inflammatory changes (Fig. 2)
Grade 3 = acute inflammatory changes with evidence of erosion.

Specimens were considered to show evidence of erosion if part of the surface epithelium was replaced by slough consisting of fibrin and polymorphonuclear leucocytes (Fig. 3), or if regenerative epithelium was

![Fig. 1 Body mucosa showing mild acute gastritis. There is a focus of acute inflammatory cells in the central part of the figure. Haematoxylin and eosin × 150.](http://jcp.bmj.com/ on June 20, 2017 - Published by group.bmj.com)
seen. An immature appearance, with decreased cytoplasmic mucin content and increased mitotic activity, was regarded as evidence of regeneration (Fig. 4).

The sum of the acute gastritis gradings ascribed to each of the standard sites biopsied at any one examination was defined as the overall acute gastritis grading. This was used as a measure of the overall degree of acute gastritis, the range being from 0 to a possible maximum of 15.

The protocol for the present study was approved by the Ethical Committee of the Oxfordshire Area Health Authority (Teaching).

Statistical analysis

Wilcoxon’s signed rank sum test was used to test the null hypothesis.

Results

Table 1 shows that the treatment groups were well matched in terms of numbers, mean age, and the
incidence and severity of chronic gastritis.

The endoscopic findings are summarised in Table 2. An erosion was found at the initial examination of one patient. At the second examination, one or more erosions were found in five patients, at least one of whom came from each of the three treatment groups. Other focal lesions were seen on nine occasions. These consisted of red antral spots in eight instances, and small, sessile polypoid lesions in the antrum in the remaining patient.

Table 1 The three treatment groups

<table>
<thead>
<tr>
<th></th>
<th>Distalgesic</th>
<th>Indomethacin</th>
<th>Sulindac</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of patients</td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Mean age (yr)</td>
<td>57.5</td>
<td>55.6</td>
<td>55.1</td>
</tr>
<tr>
<td>Male : female</td>
<td>1:2</td>
<td>1:1</td>
<td>1:2:3</td>
</tr>
<tr>
<td>% of group with chronic gastritis</td>
<td>50</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Mean overall gastritis index (chronic)</td>
<td>20.4</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2 Endoscopic findings in patients of three treatment groups

<table>
<thead>
<tr>
<th>Endoscopic findings</th>
<th>First (pretreatment) endoscopy</th>
<th>Second (post-treatment) endoscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dist</td>
<td>Indo</td>
</tr>
<tr>
<td>No focal lesion</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Focal lesion</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Erosion</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Dist = distalgesic.
Indo = indomethacin.
Sul = sulindac.

Fig. 4 Regenerative epithelium in pyloric mucosa. Immature cells deficient in mucin and with many mitotic figures are arranged in a pseudovillous pattern. Haematoxylin and eosin × 170.

Fig. 5 Chronic gastritis index for each biopsy site before and after treatment of 32 patients with one of three anti-inflammatory agents for four weeks. There was no significant change in the severity or distribution of chronic gastritis during the treatment period for the group as a whole.

CHRONIC GASTRITIS

More than half (56%) of the patients had some degree of chronic gastritis in their initial set of biopsy specimens. There was no significant change in the degree or distribution of chronic gastritis at the second examination when all 32 patients were considered together (Fig. 5). There was no significant change in the overall gastritis index in any of the
treatment groups when these were considered separately (Fig. 6).

Acute Gastritis

The overall gastritis index (chronic gastritis) and the overall acute gastritis grading are shown for each patient at each examination in Table 3. Specimens taken at the initial examination of a number of patients in each group showed acute gastritis. It is interesting to note that all of these patients also had an appreciable degree of chronic gastritis. Seventeen of the patients had been taking anti-inflammatory agents of various sorts in the 30 days before entering the study. Some patients had acute gastritis at the first examination and this raised the question of the effects of previous medication possibly persisting beyond the one week interval between stopping such treatment and the initial endoscopy. This does not appear to be so since these 17 patients seemed to have had no greater chance of having acute changes in their initial biopsy specimens than the remaining patients who had not been taking anti-inflammatory drugs before entering the study.

Six patients, whose biopsy specimens obtained at the first examination were entirely normal, developed acute gastritis during the treatment period, this being severe and widespread in four instances. This occurred in patients from each treatment group. Fig. 7 shows the overall acute gastritis grading before and after treatment for each patient. Taking the 32 patients as a whole, there was a significant increase in the overall acute gastritis grading during the treatment period (p < 0.025). Taking each treatment group separately, there was no significant difference in the overall acute gastritis grading for the patients taking Distalgesic. Of the 10 patients who were given

![Fig. 6](http://jcp.bmj.com/on June 20, 2017 - Published by group.bmj.com)

Table 3 Gastritis index and grading for each patient in three treatment groups

<table>
<thead>
<tr>
<th>Age</th>
<th>First (pretreatment) endoscopy</th>
<th>Second (post-treatment) endoscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall gastritis index (chronic)</td>
<td>Overall acute gastritis grading</td>
</tr>
<tr>
<td></td>
<td>Distalgesic</td>
<td>Indomethacin</td>
</tr>
<tr>
<td>66</td>
<td>85</td>
<td>6</td>
</tr>
<tr>
<td>45</td>
<td>55</td>
<td>6</td>
</tr>
<tr>
<td>46*</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>50*</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>61*</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>62*</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>58*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>65*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>62*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>45*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>66*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>62</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>54*</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>66</td>
<td>45</td>
<td>11</td>
</tr>
<tr>
<td>62</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>54</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>58*</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>66</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>55</td>
<td>6</td>
</tr>
<tr>
<td>44</td>
<td>55</td>
<td>4</td>
</tr>
<tr>
<td>64*</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>54*</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>65*</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>67</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>40*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>58*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Treated with an anti-inflammatory agent during the 30 days before entering the trial.

![Fig. 7](http://jcp.bmj.com/on June 20, 2017 - Published by group.bmj.com)
indomethacin, the acute gastritis remained unchanged in one, improved in two, but deteriorated in four. This apparent overall deterioration was not statistically significant. There was, however, a significant deterioration in the acute gastritis found in specimens obtained from the patients who were treated with sulindac (p = 0.03): five patients showed an increase in the degree of acute gastritis, and only one showed a slight improvement.

Discussion

The findings in relation to acute gastritis were unexpected as sulindac is less damaging than indomethacin to the gut of various animals and as sulindac is reported to be relatively free from side-effects when used in human subjects. It has been pointed out, however, that there are marked species differences with respect to the gastrointestinal side-effects of anti-inflammatory agents. Furthermore, it seems likely that acute gastritis, like chronic gastritis, is often a symptomless condition. In our study, erosions were seen endoscopically on six occasions. The patient had complained of gastrointestinal symptoms in only two instances. Acute inflammatory changes were seen in the biopsy specimens taken at endoscopy in five of the six cases. The presence in the remaining patient of an erosion seen endoscopically without any acute inflammatory changes in the biopsy specimens suggests that acute gastritis may be patchy in its distribution.

The association between chronic gastritis and acute gastritis is interesting. The fact that acute gastritis was only seen in association with appreciable degrees of chronic gastritis before the treatment period suggests that there is a relation between these two forms of gastritis. On the other hand, the most dramatic acute gastric changes occurred in patients whose initial biopsy specimens were entirely normal.

Various prostaglandins have a remarkable ability to protect the gastric mucosa against the effects of a number of noxious agents in rats. It has been reported that endoscopic biopsy specimens from patients with chronic gastritis contain increased amounts of prostaglandins. Indomethacin is a powerful inhibitor of prostaglandin synthetase activity, as is a metabolite of sulindac. Paracetamol also exhibits a degree of prostaglandin synthetase inhibition under some circumstances.

It is tempting to speculate that the dramatic occurrence of severe, generalised, acute gastritis seen in at least one patient in each treatment group was caused by inhibition of gastric mucosal prostaglandin synthesis by the anti-inflammatory drugs they were given. If the amount of prostaglandin in mucosa affected by chronic gastritis is greater than that in normal mucosa, this might explain the absence of similar dramatic occurrences in patients with chronic gastritis. If this is so, however, there must be at least one additional mechanism by which acute gastritis can develop to explain its common association with chronic gastritis.

Conclusion

Acute inflammatory changes, which may lead to erosion of the surface epithelium, can be found in gastric biopsy specimens in the absence of chronic gastritis, although the two conditions frequently coexist. In many instances, the patient has no symptoms, and no abnormalities can be detected endoscopically. As in the case of chronic gastritis, acute gastritis is not always evenly distributed within the stomach. Endoscopic biopsy from multiple sites within the stomach is therefore a highly suitable method for studying this condition.

Acute gastritis developed during the treatment period in patients from each group, but a statistically significant overall increase in acute gastritis was only seen in the group given sulindac. This suggests that, in contrast to its effect on the gastrointestinal tract of other species, sulindac is a cause of acute gastritis in man. The pattern of acute gastritis in the study group of patients suggests that the pathogenesis of this condition is complex.

We wish to thank Merck, Sharp and Dohme Ltd, Hoddesdon, Herts, for generously supporting the present study and Dr SC Truelove for his advice and assistance in planning the study and in the preparation of this paper.

The skilful technical assistance of Ms Sue Canning who processed the histological slides and of Mr Roy Holton who dealt with the photomicrographs is gratefully acknowledged.

References

The July 1981 Issue
THE JULY 1981 ISSUE CONTAINS THE FOLLOWING PAPERS

Review article
Biology and pathology of urinary tract infections
LÅ HANSON, A FASTH, U JODAL, B KAUJSER, C SVANBORG

Investigation into the microbial flora of healing and non-healing decubitus ulcers
DIANA C DALTREY, B RHODES, JG CHATTWOOD

Candidal infections and populations of Candida albicans in mouths of diabetics
LM TAPPER-JONES, MJ ALDRED, DM WALKER, TM HAYES

Cultural method for large-scale screening for Chlamydia trachomatis
H MALLINSON, S SIKOTRA, OP ARYA

Survival of tubercle bacilli in heat-fixed sputum smears
BW ALLEN

Evaluation of a new sensitive nitrite test as a reliable screening tool for bacteriuria
T RABI

Progressive renal failure in surgically treated hyperparathyroidism
JANE DIXON, JF SMITH

Prognostic value of measurement of elastosis in breast carcinoma
AJ ROBERTSON, RA BROWN, IA CREE, JB MACGILLIVRAY, W SLIDDERS, J SWANSON BECK

Gastritis and cirrhosis—no association
RC BROWN, GJ HARDY, JM TEMPERLEY, KIA MILOSZEWSKI, G GOWLAND, MS LOSOWSKY

Distribution of fibronectin in the rectal mucosa
DL SCOTT, CJ MORRIS, AE BLAKE, TS LOW-BEER, KW WALTON

Evidence for an immune complex vasculitis in neonatal necrotising enterocolitis
ELIZABETH S GRAY, DJ LLOYD, SS MILLER, AI DAVIDSON, NICOLA J BALCH, CHW HORNE

Localisation of embryonic prealbumin in formalin-fixed human fetal and adult tissue
MAUREEN E GALLON, WA REID, GA MCHARDIE, RAYMONDE HARDMAN, GD SMITH, CHW HORNE, VV KALASHNIKOV, YS TATARINOV

Hepatic artery involvement in polymyalgia arteritica
AL OGLVIE, PD JAMES, PJ TOGHILL

Diagnostic accuracy of cytology and biopsy in primary bronchial carcinoma
CR PAYNE, JW HADFIELD, PG STOVIN, V BARKER, BE HEARD, JE STARK

Distribution of HLA class 1 antigens in normal human tissue and in mammary cancer
KA FLEMING, A MCMICHAEL, JA MORTON, J WOODS, L O’D MCGEE

Placental involvement in congenital neuroblastoma
CR SMITH, HELEN SL CHAN, DJ DESA

Small bowel enterocyte abnormalities caused by methotrexate treatment in acute lymphoblastic leukaemia of childhood
JFT GWAVAVA, CR PINKERTON, JF GLASGOW, JM SLOAN, JM BRIDGES

Zincacetate as a precipitant of unstable haemoglobins
LW CARRELL, H LEHMANN

Malonaldehyde formation is not a suitable screening test to detect oxidation in human neutrophils
RG STRAUSS

Aspiration in seriously ill patients: a study of amylase in bronchial secretions
PD CLARKE, BC BAIN, A DAVIES, GE LEVIN, HP LAMBERT

Technical methods
Computerised graphic representation of clinical chemistry results
D ENLANDER

Hepatitis B virus markers on dried blood spots. A new tool for epidemiological research
ERICA VILLA, R CARTOLARI, S BELLENTANI, P RIVASI, G CASOLO, F MANENTI

Letters to the Editor

Book reviews

The Association of Clinical Pathologists: 107th Scientific Meeting

Copies are still available and may be obtained from the PUBLISHING MANAGER,
BRITISH MEDICAL ASSOCIATION, TAVISTOCK SQUARE, LONDON WC1H 9JR, price £3.00, including postage.
Histological study of the effects of three anti-inflammatory preparations on the gastric mucosa.

R L McIntyre, M S Irani and J Piris

J Clin Pathol 1981 34: 836-842
doi: 10.1136/jcp.34.8.836

Updated information and services can be found at:
http://jcp.bmj.com/content/34/8/836

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/