Three step purification of C1q by DNA precipitation, ion exchange and lectin affinity chromatography

MIKAEL RHEN, EWERT LINDER
From the Department of Bacteriology and Immunology, University of Helsinki, 00290 Helsinki 29, Finland

SUMMARY The difficulties associated with the isolation of pure C1q in sufficient amounts are reflected by the substantial number of isolation procedures, which are being published. The two major problems are a low yield and contaminating immunoglobulins. In addition, some isolation protocols appear to produce C1q contaminated with an inhibitor (C1q-INH).

The present isolation protocol involves precipitation of C1q by DNA, chromatography using Sephadex QAE A 50 followed by Con A affinity chromatography. By this combination of purification steps maximal advantage was taken of the cationic properties and high carbohydrate content of the C1q molecule. The yield was 1–2 mg C1q per 100 ml serum. The isolated C1q was free of any demonstrable contaminants as demonstrated by Ouchterlony double diffusion and polyacrylamide gel electrophoresis.

Serum C1q is a basic, high molecular weight glycoprotein (MW 410 000 pl 10) which occurs as a part of a three molecular complex consisting of C1q, C1r, and C1s.1–3 Originally C1q, or the 11 S component, was described as a thermolabile protein capable of precipitating aggregated gammaglobulin.4 Since then a number of methods for the demonstration and isolation of circulating immune complexes have been introduced, many employing the interaction between C1q and the Fc fragment of immunoglobulin.5 6

The complex function and structure of C1q and the various interactions of this molecule have lately been subject to intense investigation.7–11 Usually the interest has been restricted to the properties of the globular head region of C1q, recently it has been shown, however, that the binding of C1q to blood mononuclear cells is mediated by the collagenous portion of the molecule7 and that binding of C1q to fibronectin takes place by a similar mechanism.12 13

Functional, structural and biochemical studies usually require purified proteins. For these reasons there has been an increased need for isolated and functionally intact C1q. Although various methods for the purification of C1q have been described, the isolation is often associated with problems, especially low yield and contaminating immunoglobulins.

In this work DNA-precipitated C1q14 was further purified successfully using a combination of ion exchange and affinity chromatography. The purified protein was biologically functioning and free of contaminating immunoglobulins demonstrable by means of SDS-polyacrylamide gel electrophoresis and Ouchterlony gel precipitation methods. All the reagents and materials used in the C1q isolation protocol are commercially available.

Material and methods

SERA
Human plasma was defibrinated by adding 1 mM CaCl₂ and 85 μl thrombin (1000 IU/ml in 50% wt/wt glycin; Topostasin, Hoffman la Roche Ltd, Basel, Switzerland). The fibrinogen was removed by centrifugation and Ca²⁺ ions were precipitated by adding 200 mg sodium oxalate per 100 ml serum.

IMMUNODIFFUSION METHODS
Quantification of IgG, IgM as well as C1q was carried out using radial immunodiffusion plates (Behringwerke AG, Marburg, GFR). Ouchterlony double diffusion was performed in 1% agarose (Seakem Agarose, Marin Colloids Inc, USA) in barbital-acetate buffer, pH 8.2. Immunoelectrophoresis was carried out in 0.9% agarose, TRIS-barbital buffer. pH 8.6 u = 0.04. For the demonstration of C1q, immunoelectrophoresis was
performed in 0.1 M phosphate buffer, pH 7.5. Rabbit antisera against human serum proteins, IgM, IgG and C1q were from Behringwerke and Dako Immunoglobulins (Copenhagen, Denmark).

PROTEIN ANALYSIS
Protein concentrations were measured with the Folin phenol reagent with 0.1% sodium dodecyl sulphate (SDS) in the reaction mixture. Polyacrylamide gel electrophoresis (PAGE) was performed using 8% slab gels containing SDS and stained with Coomassie blue. C1q was iodinated by the chloramine T method and labelled protein was studied by fluorography (Kodak X-omat film, USA).

DNA PRECIPITATION
Precipitation of C1q from serum was performed essentially as described previously. Briefly, serum was dialysed against a 0.025 M Veronal, 0.01 M ethylenediaminetetraacetate (EDTA) buffer, pH 8.6. Then 25 µg deoxyribonucleic acid (Calf Thymus DNA, Worthington Biochem Corp, Freehold, New Jersey, USA) per ml sera was added. The precipitate was collected by centrifugation and washed four times in 0.025 M Veronal buffer, pH 8.6 solubilised in a 0.05 M phosphate buffer (pH 6.9-7.0) containing 0.05 M NaCl, 3 mM MgCl₂. To this, 100 µg DNase I (Worthington Biochem Corp, Freehold, New Jersey, USA) was added. After the precipitate had dissolved the mixture was dialysed against the phosphate buffer for 12 h. Insoluble aggregates were removed by centrifugation at 30,000 rpm for 30 min (Spinco SW 50, 1 rotor).

CHROMATOGRAPHY
Dry Sephadex QAE- A-50 (Pharmacia, Uppsala, Sweden) was dissolved in a buffer containing 0.01 M TRIS-HCl and 0.1 M NaCl, pH 7.5. After complete swelling, the gel was packed in columns possessing volumes about 10 times those of the sample. C1q containing fractions obtained from the ion exchange were pooled and applied on a Con-A Sepharose column (Pharmacia, Uppsala, Sweden) in a 0.01 M Veronal, 0.5 M NaCl, 0.001 M CaCl₂ buffer, pH 8.0 (based on the observation by Conradi et al). After exhaustive washing the elution was carried out by making the elution buffer 0.5 M in α-methylmannopyranoside (Calbiochem AG, Switzerland). Before application, all samples were dialysed overnight against the gel buffer.

IMMUNOFLUORESCENCE MICROSCOPY
Antibody-independent binding of C1q to cytoplasmic filaments and cell nuclei of fetal human skin were used as an assay for functionally intact C1q.

Frozen sections were fixed for 15 min in 3.5% paraformaldehyde and treated with 0.1% of the non-ionic detergent NP 40 (BDH, Poole, England). Samples to be tested were incubated for 30 min at room temperature and subsequently stained with FITC-conjugated rabbit anti-human C1q (Behringwerke AG, Marburg GFR, molar fluorescein:protein (F:P) ratio = 1.7). For demonstration of bound immunoglobulins we used a FITC-conjugated sheep anti-human Ig (Polyvalent) conjugate F:P ratio 3:2 (NBL, Stockholm, Sweden). All washings were carried out in phosphate-buffered saline. The sections

Fig. 1 SDS polyacrylamide gel electrophoresis of reduced and alkylated C1q. Slot a: fluorography of purified ¹²⁵I-labelled C1q shows labelling of subunit C. Slot b: purified C1q, the 3 subunits, A, B and C can be distinguished. Slot c: phosphorylase (94 K) bovine serum albumin (67 K), ovalbumin (43 K), carbonic anhydrase (30 K), soya bean trypsin inhibitor (20 K). b and c were stained with Coomassie blue.
could be analysed using agarose gels. In immunoelectrophoresis, the purified Clq gave only one cathodic arc and showed a reaction of identity against antihuman serum protein and antiClq (Fig. 2). Immunoelectrophoresis and Ouchterlony double diffusion assays of the purified Clq preparation (250 μg/ml) did not reveal any contaminants when tested against antihuman serum protein antiserum. Additional double diffusion tests for purity were performed using Clq in concentrations ranging from 0.1–1.0 mg/ml against anti-IgG and anti-IgM. Also in these assays the Clq preparation was found to be free of contaminants. The immunofluorescence assay for complement binding was found to be a rapid and sensitive method for identification of Clq from different column fractions (Fig. 3) (5–10 μg/C1q/ml still detectable). No contamination immunoglobulins were detected. The purified protein also precipitated aggregated γ-globulin in agarose gel and IgG-coated latex particles (data not shown).

Discussion

In this study DNA-precipitated Clq was successfully isolated using a combination of ion exchange and affinity chromatography. Being a strongly cationic protein, Clq was, in contrast to many other serum proteins, able to move through the QAE ion exchange column. By absorbing Clq to the immobilised Concanavallin A, it was possible to remove containing IgG, since this protein has a very poor affinity to the lectin. Any interaction between Clq and immunoglobulins was minimised by the high ionic strength of the buffer. According to recent work this step would also remove a serum inhibitor for C1q. The purified protein moved cathodally in electrophoresis and reacted with antiClq. Thus, the protein was identified as C1q. We were not able, however, to demonstrate the reported anodal arc seen in immunoelectrophoresis. Furthermore, when reduced and alkylated, it was possible to demonstrate the three peptide chains (A, B and C) of Clq in SDS-PAGE. During the purification, concentration by ultrafiltration was avoided, all buffer changes were performed by dialysis and Clq samples were stored at −70°C. At this temperature the final preparation was stable for at least five months.

The purified Clq reacted with cell nuclei and intermediate filaments similarly as serum Clq when foetal skin was used as substrate in the immunofluorescence assay. The binding of Clq not only to nuclei but also to the filaments appearing as “microfibrils” in the tissue sections suggests that
Three step purification of C1q by DNA precipitation, ion exchange and lectin affinity chromatography

C1q is functionally active and capable of generating the classical pathway C3 convertase.22,27

References

Requests for reprints to: Dr E Linder, Department of Bacteriology and Immunology, University of Helsinki, 00290 Helsinki 29, Finland.
Three step purification of C1q by DNA precipitation, ion exchange and lectin affinity chromatography.

M Rhen and E Linder

J Clin Pathol 1982 35: 1114-1117
doi: 10.1136/jcp.35.10.1114

Updated information and services can be found at: http://jcp.bmj.com/content/35/10/1114

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/