Sensitivity tests with cephalosporins

PAMELA M WATERWORTH

From the Department of Microbiology, University College Hospital, London WC1E 6AU

SUMMARY The sensitivity of 127 strains of miscellaneous Gram-negative bacilli to various cephalosporins was determined by three methods. Disc tests with cephaloridine (CLOR), cephalothin (CTIN) and cephalaxin (CLEX) made most strains of beta-lactamase-producing Escherichia coli appear sensitive. Eight cephalosporins were tested by the agar break-point method using concentrations of 16 and 4 mg/l for all except cefotaxime (CTAX), when 8 and 1 mg/l were used. In repeated tests there was considerable variation in the response of many strains to the lower concentration of CLOR, CTIN, CLEX and to a lesser extent, cefoxitin (CFOX) and cefuroxime (CROX), and beta-lactamase-producing E coli appeared as sensitive or moderately sensitive to all. Cephalosporins CLOR, CLEX, and CROX were then tested by inoculating 2 ml volumes of broth containing a 30 μg disc; all the beta-lactamase-producing E coli grew in CLOR and CLEX but were inhibited by CROX.

For many years some workers have questioned the reliability of sensitivity tests with the earlier cephalosporins, particularly with ampicillin-resistant coliform bacilli; organisms which give inhibition zones little smaller than that of the standard sensitive strain may fail to respond to treatment. Greenwood et al. investigated this problem, using 103 strains of ampicillin-resistant enterobacteria, by comparing the zones of inhibition produced by cephaloridine (CLOR) and cephalothin (CTIN) with the rate of regrowth of a dense bacterial population in broth containing 250 mg/l of these drugs. Taking regrowth in eight hours as indicating resistance, many strains found to be resistant by the turbidimetric system had been considered to be sensitive by the disc test, and they questioned whether such strains should be classed as sensitive to these drugs.

Williams recognised this as a clinical problem and suggested that organisms having a minimum inhibitory concentration (MIC) of 1 or 2 mg/l could be expected to respond to treatment, but those requiring 4 or 8 mg/l may fail. The introduction of Adatabs (Mast Laboratories Ltd) has greatly simplified the preparation of antibiotic-containing media, and the present work was undertaken to see whether more satisfactory results could be obtained by using a simple dilution method employing two break-point concentrations of each drug.

Material and methods

ORGANISMS

Of the 127 organisms tested, 96 were urinary isolates and the remainder stock cultures. They comprised Escherichia coli (67), Klebsiella aerogenes (13), Enterobacter spp (11), Proteus mirabilis (13), Proteus vulgaris (3), Proteus morgani (3), Proteus rettgeri (3), Serratia spp (4), Providencia (4), Acinetobacter (2), Pseudomonas aeruginosa (3) and Citrobacter freundii (1). All organisms were grown overnight in broth, and unless otherwise stated were diluted by adding a 2 mm loopful of this to 4-5 ml sterile water for use in a Steers, Foltz and Graves multiple replicator.

MINIMUM INHIBITORY CONCENTRATIONS

These were determined by the plate dilution method using Isosensitest agar (Oxoid) with an added 0.8% Oxoid agar No 1.

Cefotaxime (CTAX) was kindly supplied by Roussel and cefamandole (CMAN) and cephalaxin (CLEX) by Eli Lilly. Pharmaceutical preparations of CLOR, CTIN, CROX, CFOX and cefazolin (CZOL) were used.

DISC TESTS

Tests were done on Isosensitest agar (Oxoid). Plates were inoculated by applying a 2 mm loopful of broth culture to the surface, streaking this across the plate with a dry sterile swab, then spreading uniformly over the whole plate with the other side of the swab using a
rotary plater. Discs (Oxoid) containing 30 μg of each drug were applied to the plates which were incubated without delay. After overnight incubation zone diameters were measured and these were plotted against the MIC of the organism. Any organism giving a zone as large as that given by the control E. coli (NCTC 10418) or not > 6 mm smaller was classed as sensitive (S). Organisms giving a zone of at least 12 mm (disc 6 mm) but > 6 mm smaller than the control were classed as moderately sensitive (M), and those giving zones of < 12 mm as resistant (R).

Break-Point Tests

These were done by multiply inoculating plates containing 16 and 4 mg/l of each cephalosporin, except CTAX, when the concentrations used were 8 and 1 mg/l. Organisms inhibited by both concentrations were classed as sensitive (S) those inhibited only by the higher as moderate (M) and those growing on both plates were considered resistant (R).

The antibiotics were supplied by Mast Laboratories as Adatabs containing 1·6 and 0·4 mg (CTAX 0·8 and 0·1 mg). One Adatab was added to bottles containing 100 ml melted, and cooled agar, according to the manufacturers’ instructions, and five plates were poured from each bottle. All organisms were tested five times, using Oxoid Isosensitest agar + 0·8% No 1 agar twice and Mast DST agar + 50 mg/l paranitrophenyl glycerol (PNPG, also supplied as an Adatab) three times. Plates were stored up to three days at 4°C and dried well at 37°C before use.

Broth Tests

Broth tests were done by adding a 30 μg disc to 2 ml broth (Oxoid No 2) and inoculating the tube with a 2 mm loop of broth culture.

Beta-Lactamase Production

Production was tested for using Oxoid Beta-lactamase detection papers according to the manufacturers’ instructions.

Results

Minimum inhibitory concentrations of each drug for all the organisms were determined and the results are given in Table 1. All organisms were tested for \(\beta \)-lactamase production; 15/67 strains of E. coli, 12/13 K. Enterobacter spp were found to be positive by this method, together with five strains of the remaining species.

Break-Point Tests

All the organisms were tested against all the drugs on five occasions and the number appearing resistant (R), moderate (M) or sensitive (S) in all five tests in 4/5 tests and in 3/5 tests are given in Table 2. It will be seen that a very large proportion of strains varied between S and M to CLOR and CTIN, and results with CFOX and CROX were little better. This variation is almost certainly the result of the proximity of the lower break-point used (4 mg/l) to the MIC of many of the strains (see Table 1). In contrast, the results with CMAN, CZOL and CTAX were much more consistent because the MICs were considerably lower. The MIC of the \(\beta \)-lactamase-producing strains was 4–8 mg/l; two strains were consistently S to CLOR, two varied between S and M and 10 were always M.

There is no evidence that the results were affected by either of the media used; both appeared satisfactory and the swarming of Proteus spp was adequately controlled.

Effect of Inoculum

Plates containing 16 and 4 mg/l of CLOR, CTIN, CLEX, CFOX and CROX were inoculated with overnight broth cultures diluted 1/10 and 1/1000; 102 strains were tested. With CLOR 13 strains changed from S to M and 10 from M to R with the heavier inoculum, but these included only three of the \(\beta \)-lactamase-producing E. coli, the remainder being unaffected. With CTIN six strains changed from S to M and 10 from M to R. Six strains changed from S to

<table>
<thead>
<tr>
<th>Cephalosporin</th>
<th>No of strains inhibited by eight cephalosporins (mg/ml)</th>
<th>Resistant</th>
<th>Moderate</th>
<th>Sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><256</td>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>Cephaloridine</td>
<td>(CLOR)</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Cephalorixin</td>
<td>(CIN)</td>
<td>15</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Cephalxin</td>
<td>(CLEX)</td>
<td>14</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>(CFOX)</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>(CFOX)</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cefamandole</td>
<td>(CMAN)</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>(CZOL)</td>
<td>12</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>(CTAX)</td>
<td>12</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

*102 strains were inhibited by < 0·06 mg/l.
Sensitivity tests with cephalosporins

Table 2 No of strains appearing resistant, moderate, or sensitive in five tests by the break-point method

<table>
<thead>
<tr>
<th></th>
<th>CLOR</th>
<th>CTIN</th>
<th>CLEX</th>
<th>CFOX</th>
<th>CROX</th>
<th>CMAN</th>
<th>CZOL</th>
<th>CTAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 tests</td>
<td>36</td>
<td>29</td>
<td>23</td>
<td>12</td>
<td>15</td>
<td>12</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>4/5 tests</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3/5 tests</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 tests</td>
<td>17</td>
<td>25</td>
<td>48</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4/5 tests</td>
<td>3</td>
<td>13</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3/5 tests</td>
<td>14</td>
<td>8</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Sensitive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 tests</td>
<td>27</td>
<td>19</td>
<td>6</td>
<td>62</td>
<td>44</td>
<td>98</td>
<td>66</td>
<td>120</td>
</tr>
<tr>
<td>4/5 tests</td>
<td>16</td>
<td>16</td>
<td>12</td>
<td>22</td>
<td>18</td>
<td>4</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>3/5 tests</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

CLEX to M and two strains of *P. mirabilis* went from M to R. With both CFOX and CROX 10 strains changed from S to M. In almost all these changes the MIC of the organism was close to the break-point.

DISC TESTS

Disc tests were done with CLOR, CTIN, CLEX, CFOX, and CROX and the results were compared by plotting the zone diameter for each strain against its MIC. The best results were obtained with CTIN and CLEX, when the majority of zones for a given MIC varied no more than 4 mm and there was little overlap between strains with different MIC. Both CFOX and CROX often gave very diffuse edges to the zone, making precise measurement difficult and there was a wider variation in zone size and considerable overlap between different MIC.

The number of strains classed as S and M by these tests is given in Table 3. All but four of the organisms tested were resistant to CLOR. CFOX and CROX were done on 67 strains of *E. coli*, seven *K. aerogenes* and one *P. mirabilis* all with MIC ≤ 16 mg/l. Fifteen of the strains of *E. coli* produced beta-lactamase and all grew in CLOR and CLEX but (with the exception of one strain which gave partial growth) were inhibited by CROX; all the remaining strains were inhibited by CLOR. Sixteen gave full growth and 12 partial growth in CLEX, but the MIC of the majority of these was 8–16 mg/l. All the Klebsiella produced beta-lactamase, but only two of these grew in CLOR; four gave partial growth in CLEX and two in CROX.

The strain of *P. mirabilis* gave partial growth in all drugs.

When the tests with the beta-lactamase-producing *E. coli* were repeated with the inoculum diluted 1/100, all strains were inhibited by CLOR and CLEX as well as by CROX.

Discussion

In the present work, the MIC of CLOR for beta-lactamase-producing *E. coli* and the results obtained with the disc test are similar to those reported by Greenwood *et al.* and by Williams. Eight strains had MIC of 8 mg/l and only four of these gave zones which were classed even as M, the remainder, together with those having MICs of 4 mg/l appeared as S. It is clearly impossible to detect these potential treatment failures by the disc test; increasing the size of the inoculum did not improve the results as all zones were reduced regardless of beta-lactamase production.

It is equally clear that it is impossible to distinguish these strains by an agar dilution method. Nearly half of the 127 strains tested in this study had MIC of 4 or 8 mg/l for CLOR, CTIN, CLEX, CFOX and CROX and it is not surprising that many of these strains varied in their response to a break-point of 4 mg/l; indeed, with CLOR and CTIN only about half the strains in the S and M categories gave the same result in all five tests.
The method used by Greenwood et al. which led them to question whether β-lactamase-producing E. coli should be classed as S to CLOR or CTIN, is obviously unsuitable for routine sensitivity testing, but it suggests that a break-point method in broth might serve the same purpose. The results obtained in the present study indicate that this is so. When discs containing 30 μg CLOR or CROX were added to 2 ml broth, all the β-lactamase-producing E. coli appeared resistant to the former and sensitive to the latter. This concentration (15 mg/l) was obviously too low for use with CLEX and better results would probably have been obtained had the disc been added to only 1 ml broth, all the β-lactamase-producing E. coli appeared there is always the risk that small numbers of cells having a slightly higher MIC will grow out. Therefore the presence of only partial growth in these tests should be disregarded.

It is therefore suggested that if sensitivity tests to either CLOR, CTIN, or CLEX are required, they should be performed by adding the disc to broth instead of to an agar plate, and using a heavy inoculum.

References

Requests for reprints to: Miss Pamela M Waterworth, 6 Weydon Hill Close, Farnham, Surrey GU9 8PA, England.
Sensitivity tests with cephalosporins.

P M Waterworth

doi: 10.1136/jcp.35.11.1177

Updated information and services can be found at:
http://jcp.bmj.com/content/35/11/1177

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/