Letters to the Editor

Reference Laboratory who provided us with the specimens of human and rabbit sera.

JOHN BARBARA 
RAJAS SALKER 
FATIMA LALJI 
PETER MOCHNATY 
North London Blood Transfusion Centre, 
Deansbrook Road, 
Edgware, Middlesex HA8 9BD

References


Serum gamma-glutamyltransferase and alkaline phosphatase in rheumatoid arthritis

The paper by Spooner and colleagues1 in the June issue prompts us to record our own observations on patients with rheumatoid arthritis. In a consecutive series of 46 patients (34 females, 12 males), all with positive serology, serum gamma-glutamyltransferase (GGT) activity was increased in eight patients (17%) and alkaline phosphatase (AP) in six (13%). This incidence of raised GGT is slightly lower than that found by Spooner et al, whereas the incidence of raised AP is much less.

On all patients showing raised serum enzyme activity we carried out isoezyme examination by electrophoresis.2 3 GGT-2 was the principal GGT isoenzyme in six of the eight patients showing raised GGT activity, GGT-3 was present in all, and markedly increased in three. This pattern is typical of, but not exclusive to, patients with liver disease,4 and is especially found with intrahepatic cholestasis. In all six patients with increased total AP activity there was increased activity of the liver AP isoenzyme. In four of these, this was accompanied by increased "biliary" isoenzyme, and in one by additional increase of the bone isoenzyme.

Our studies indicate that in patients with rheumatoid arthritis showing raised activities of GGT or AP, this is likely to be of hepatic origin.

SIDNEY B ROSALKI 
A YING FOO 
PETER AS TANNER

Department of Chemical Pathology, 
The Royal Free Hospital, 
Pond Street, 
Hampstead, London NW3 2QG

References


Standardisation in the laboratory control of oral anticoagulant therapy

In collaboration with the International Committee for Standardisation in Haematology (ICSH), the European Community Bureau of Reference (BCR) has produced three certified reference materials for the standardisation of commercial or laboratory-made human, bovine and rabbit thromboplastins, respectively. These reference materials have been calibrated against the WHO international reference preparation (IRP 67/40). By using the appropriate BCR reference material (human, bovine or rabbit) a sensitivity index can be assigned to any thromboplastin working preparation which will thus be directly related to the WHO primary reference preparation.

In clinical practice a prothrombin ratio obtained by means of thromboplastin reagent with an assigned sensitivity index can then be converted to an international normalised ratio (INR) by a simple equation: INR = antilog of (log prothrombin x sensitivity index).

Manufacurers are being encouraged to establish the sensitivity indices of their thromboplastin reagents and to provide an appropriate Table of INRs. A therapeutic range for INR of 2.0–4.0 has been recommended.

Details of the scheme have recently been described.1 Information of the availability of BCR Certified Reference Materials, a report of the certification protocol and recommended methodology for calibration of working preparations are available from the European Community Bureau of Reference, Rue de la Loi 2000, Brussels B-1049, Belgium.

SM LEWIS 
Chairman, International Committee 
for Standardization in Haematology

Reference


Direct evidence of localised immunological damage in vulvar lichen sclerosus et atrophicus

Lichen sclerosus et atrophicus (LSA) is known to be associated with an increased incidence of organ-specific autoantibodies1 and autoimmune diseases2. In addition a raised incidence of HLA-B40 in this disease has recently been reported and has led to the suggestion that this antigen may be in linkage disequilibrium with immune response genes controlling the susceptibility to both LSA and their autoimmune diseases3.

The present study has been designed to determine whether LSA is associated with immunological phenomena. A search has been undertaken for immunohistochemical evidence of deposition of immunoglobulin, complement (C3) and fibrin in the vulvar lesion and using adjacent normal skin as a control. In addition, sera from these patients have been screened for autoantibodies.

PATIENTS AND METHODS

Biopsies from 16 caucasian women (age range 36–78 yr, mean 64.6 yr) with vulvar LSA were collected over a period of six years. The histopathological diagnosis was confirmed by two independent observers and was based on the presence of hyperkeratosis, epidermal atrophy, homogenisation of the collagen of the upper dermis and an underlying chronic inflammatory cell infiltrate. Wedge biopsies of the affected and non-affected skin were snap-frozen and then examined by a standard direct immunofluorescence technique for the presence of immunoglobulin (IgG, IgA, IgM and IgE), complement (C3) and fibrin with commercially prepared fluorescein-labelled antisera (Wellcome Foundation and Hoechst Pharmaceuticals). Serum samples from 14 patients were obtained and screened routinely in the immunopathology laboratory for the presence of organ-specific and non-organ-specific antibodies.

Downloaded from http://jcp.bmj.com/ on June 20, 2017 - Published by group.bmj.com
including thyroid, stomach and salivary gland and also for nuclear antibodies (ANA), smooth muscle antibodies and mitochondrial and reticulin antibodies. An indirect immunofluorescence method was used in the search for autoantibodies and, in addition, thyroid antibodies were sought using precipitin test, tanned red cell test (TRC, Wellcome Foundation) and later by the Thymune T and M tests (Wellcome Foundation).

RESULTS
Positive immunofluorescent staining was observed in 12 of 16 biopsies (75%), comprising fibrin (12 cases), C3 (4 cases) and IgM (4 cases). Two biopsies displayed positive staining for all three proteins. The staining was in relation to the epidermal basement membrane (Figure (a) and (b)) and, in all cases, only involved the histologically abnormal areas, the adjacent normal areas being devoid of staining.

Nine patients of 14 (64%) studied serologically had one or more autoantibodies (Table), but only five of 14 patients (36%) had organ-specific autoantibodies. Four patients (28%) had more than one antibody. Of the patients with matched serum samples and biopsies showing positive staining for fibrin, six of 12 (50%) had autoantibodies, and of those positive for IgM, C3, or both, three of five (60%) had autoantibodies. The three patients with positive serology but negative immunofluorescence all had non-organ-specific autoantibodies.

Using cryostat sections of normal skin and a direct immunofluorescence technique, no evidence of circulating antibodies to epidermal basement membrane was found in sera from six patients with LSA.

DISCUSSION
To our knowledge, this is the first report of immunoglobulin and complement (C3) deposition along the epidermal basement membrane. In earlier studies, LSA has been shown to be associated with an increased incidence of autoantibodies and a particular HLA antigen (HLA-B40) but the present findings offer direct support for the view that LSA has an autoimmune basis. In this study there is no evidence of immunoglobulin and complement deposition in the basement membrane zone of the unaffected skin of patients with LSA, which contrasts with the findings in systemic lupus erythematosus. Likewise in our study there are no detectable antibodies in the serum which react with the epidermal basement membrane of normal skin unlike SLE.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>No. of patients</th>
<th>% with positive serology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Thyroid (thyroglobulin and microsomal)</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>Gastric parietal cell</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Salivary gland</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Reticulin</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Mitochondrial</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Smooth muscle</td>
<td>2</td>
<td>14</td>
</tr>
</tbody>
</table>
Letters to the Editor

The overall incidence of organ-specific autoantibodies in our series of patients is similar to that reported in earlier studies,

1, 2
and this is virtually excluded by the fact that occasionally the control organism is the only one failing to grow and sometimes both control and test are affected.

The phenomenon was first noticed on Isosensitest agar but occurs also on DST with lysed blood and on Isosensitest without lysed blood. Addition of supplements of thymine, thymidine and aneurin do not correct the problem. However on plates with a chloramphenicol disc, growth of the affected organisms is stimulated in a narrow band immediately at the edge of the zone of inhibition caused by the antibiotic—that is, in the zone of sub-inhibitory concentrations. Benzylpenicillin stimulates growth if the organism is resistant, but apparently not if the organism is sensitive.

We are quite unable to fathom the cause of this phenomenon. We are thus unable to reproduce the appearance in a model to test any theories we may have. It does not appear to be related to the swab sticks used to inoculate the plates or the broth used to prepare the suspensions for inoculation, in which the organisms grow quite happily after subsequent overnight incubation.

Have any of your readers encountered this phenomenon and do they have an explanation?

RJ DICKIE
CHW HORNE
HW SUTHERLAND
PD BEWSHER
L STANKLER

Departments of Pathology, Obstetrics and Gynaecology, Therapeutics and Dermatology,
University Medical Buildings, Foresterhill,
Aberdeen AB9 2ZD

References


Failure of growth on sensitivity testing agar

Over a period of three years there has been a recurring problem of failure of growth of organisms noted specifically on sensitivity plates containing lysed horse blood. The organisms most frequently involved have been wild strains of Staphylococcus aureus and occasionally Staph epidermidis but much less frequently Gram-negative rods including Pseudomonas have failed. The rarity of the phenomenon in relation to Gram-negative rods makes simple thymine dependence unlikely and this is virtually excluded by the fact that occasionally the control organism is the only one failing to grow and sometimes both control and test are affected.

The phenomenon was first noticed on Isosensitest agar but occurs also on DST with lysed blood and on Isosensitest without lysed blood. Addition of supplements of thymine, thymidine and aneurin do not correct the problem. However on plates with a chloramphenicol disc, growth of the affected organisms is stimulated in a narrow band immediately at the edge of the zone of inhibition caused by the antibiotic—that is, in the zone of sub-inhibitory concentrations. Benzylpenicillin stimulates growth if the organism is resistant, but apparently not if the organism is sensitive.

We are quite unable to fathom the cause of this phenomenon. We are thus unable to reproduce the appearance in a model to test any theories we may have. It does not appear to be related to the swab sticks used to inoculate the plates or the broth used to prepare the suspensions for inoculation, in which the organisms grow quite happily after subsequent overnight incubation. Have any of your readers encountered this phenomenon and do they have an explanation?

JOHN DARRELL
Royal Postgraduate Medical School,
Hammersmith Hospital,
Du Cane Road, London W12 0HS
Direct evidence of localised immunological damage in vulvar lichen sclerosus et atrophicus.
R J Dickie, C H Horne, H W Sutherland, P D Bewsher and L Stankler

J Clin Pathol 1982 35: 1395-1397
doi: 10.1136/jcp.35.12.1395-c

Updated information and services can be found at:
http://jcp.bmj.com/content/35/12/1395.3.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/