Analysis of large-cell lymphomas using monoclonal and heterologous antibodies

P VAN DER VALK, G VAN DEN BESSELAAR-DINGJAN, MR DAHA*, CJLM MEIJER†

From the Departments of Pathology and *Internal Medicine, University Medical Centre, Leiden, and the †Department of Pathology, Stichting Samenwerking Delftse Ziekenhuizen, Reynier de Graefweg 7, Delft, The Netherlands

SUMMARY Fifteen cases of large-cell lymphoma, diagnosed as centroblastic (5), B-immunoblastic (5) or true histiocytic (5)-lymphoma and one case of malignant histiocytosis were studied with monoclonal antibodies. Each diagnosis was based on morphological as well as marker studies. A panel of monoclonal and heterologous antibodies against T lymphocyte differentiation antigens (Leul, Leu2a, Leu3a, OKT4, OKT8, TA1), B lymphocyte subsets (BA1, BA2, HLA-DR, aC3b receptor antiserum, surface immunoglobulins), the common acute lymphoblastic leukaemia antigen (CALLA), monocytes/macrophages (OKM1, anti-human monocyte 1, TA1, Mac1, HLA-DR, anti-C3b receptor), myeloid cells (VIM-D5, elastase, OKM1) and the cells of the Langerhans cell/interdigitating reticulum cell series (OKT6, NA1/34). The results show a specific staining pattern for true histiocytic lymphoma (histiocytic sarcoma). Centroblastic and B-immunoblastic lymphomas showed gradual differences with mostly strong staining for HLA-DR and weak with anti C3b receptor for B-immunoblastic lymphomas in contrast to centroblastic lymphomas. Staining with BA1 and BA2 indicated immunological heterogeneity in these lymphomas. The number of admixed cells was usually low with few B cells and a shift in the ratio helper/inducer to suppressor/cytotoxic T cells in favour of the suppressor/cytotoxic subset.

In studying the non-Hodgkin’s lymphomas identification of the nature of neoplastic cells is usually based on immunological techniques, cytochemistry, and electron microscopy, using classical markers; for example, surface membrane and/or intracytoplasmic immunoglobulins, rosette formation with sheep erythrocytes, staining with heterologous T cell antisera, presence of Fc gamma and complement (C3) receptors, acid phosphatase and/or alpha-naphthyl acetate esterase activity, etc. The recent development of monoclonal antibodies directed against defined antigens present on subsets of lymphoid and histiocytic cells has created new possibilities to differentiate between the various types of large-cell lymphomas. In the present study 15 cases of large-cell lymphomas, classified as centroblastic (5), B-immunoblastic lymphoma (5) or histiocytic sarcoma (5) with conventional immunological markers, cytochemistry and electron microscopy and one case of malignant histiocytosis were investigated with a panel of monoclonal antibodies directed against antigens present on subsets of lymphoid, histiocytic and/or myeloid cells to find out whether the mentioned subtypes of large-cell lymphomas form immunologically heterogeneous groups. Moreover, the monoclonal antibodies were investigated for their diagnostic value in the differentiation of large-cell lymphomas.

Material and Methods

Tissue Processing
Each tissue specimen was cut into four pieces. One was fixed in buffered formalin (routine histology), one was fixed in a sublimate-formaldehyde mixture (immunohistochemistry), one was fixed in a fixative according to Burkhardt (plastic embedding), and one piece was snap-frozen in liquid nitrogen. For electron microscopy, eight small blocks of tissue had been cut from one of the four pieces before fixation or freezing. These blocks were fixed according to McDowell and Trump.

Immunohistochemistry
Immunohistochemical investigation was carried out on paraffin-embedded sections (4μm). It included staining with rabbit antibodies by an indirect immunoperoxidase technique for kappa and lambda light chains, alpha, gamma and mu heavy chains, lysozyme (all obtained from Dakopatts, Denmark), alpha-1-antitrypsin and alpha-1-antichymotrypsin (Behringwerke, Amsterdam).

Accepted for publication 2 August 1982
As a second step a goat-antirabbit IgG tagged with horseradish peroxidase, prepared in our laboratory, was used. The specificity of these antibodies and the controls of the staining procedure have been described in detail before.\(^5\) The elastase antiserum used was a rabbit-antihuman antibody, prepared by Dr JA Kramps from granulocytes. It was tested on a variety of normal and neoplastic tissues and cell suspensions and proved virtually specific in staining myeloid elastase\(^6\) (Table 1).

Immunofluorescence

These studies were performed on cryostat sections (4\(\mu\)m) using an indirect immunofluorescence technique with the same antisera as mentioned above. In addition a rabbit antibody against delta heavy chain was used. This antibody was obtained from the Central Laboratory of the Blood Transfusion Service (Amsterdam), as was the second step, a horse-antirabbit IgG, tagged with FITC.

Table 1 Antibodies and their specificity

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Monoclonal (M)</th>
<th>Heterologous (H)</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu1</td>
<td>M</td>
<td></td>
<td>95% human thymocytes, 85% peripheral T lymphocytes, some slg+ B-CLL cells, no normal B lymphocytes(^8)</td>
</tr>
<tr>
<td>Leu2a</td>
<td>M</td>
<td></td>
<td>suppressor/cytotoxic T subset(^17)</td>
</tr>
<tr>
<td>Leu3a</td>
<td>M</td>
<td></td>
<td>helper/inducer T subset(^18)</td>
</tr>
<tr>
<td>OKT4</td>
<td>M</td>
<td></td>
<td>helper/inducer T subset(^19)</td>
</tr>
<tr>
<td>OKT8</td>
<td>M</td>
<td></td>
<td>suppressor/cytotoxic T subset(^20)</td>
</tr>
<tr>
<td>TA1</td>
<td>M</td>
<td></td>
<td>100% peripheral blood T lymphocytes, 70% thymocytes, 95% peripheral blood monocytes(^21)</td>
</tr>
<tr>
<td>BA1</td>
<td>M</td>
<td></td>
<td>peripheral blood B lymphocytes, some B-ALL and B-CLL cells, granulocytes(^22)</td>
</tr>
<tr>
<td>BA2</td>
<td>M</td>
<td></td>
<td><1% peripheral blood lymphocytes, lymphohemopoietic progenitor cells in bone marrow, non T-non B-ALL cells(^23)</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>M</td>
<td></td>
<td>B lymphocytes, monocytes/macrophages, activated T lymphocytes(^124)</td>
</tr>
<tr>
<td>anti-C3b-receptor</td>
<td>H</td>
<td></td>
<td>cells having a C3b receptor—</td>
</tr>
<tr>
<td>OKM1</td>
<td>M</td>
<td></td>
<td>peripheral blood monocytes, granulocytes, acute myelomonocytic leukemia cells(^25)</td>
</tr>
<tr>
<td>Mac1</td>
<td>M</td>
<td></td>
<td>macrophages, granulocytes, blood monocytes(^26)</td>
</tr>
<tr>
<td>anti human monocyte</td>
<td>M</td>
<td></td>
<td>peripheral blood monocytes <25% of granulocytes, 25% of platelets(^27)</td>
</tr>
<tr>
<td>OKT6</td>
<td>M</td>
<td></td>
<td>70% thymocytes, epidermal Langerhans cells(^28)</td>
</tr>
<tr>
<td>NA1/34</td>
<td>M</td>
<td></td>
<td>cortical thymocytes, epidermal Langerhans cells</td>
</tr>
<tr>
<td>CALLA</td>
<td>H</td>
<td></td>
<td>granulocytes, myelocytes, myeloblasts, monoblasts(^29)</td>
</tr>
<tr>
<td>VIM-D5</td>
<td>M</td>
<td></td>
<td>granulocytes, myelocytes, myeloblasts(^30)</td>
</tr>
<tr>
<td>anti- elastase slg</td>
<td>H</td>
<td></td>
<td>cells carrying immunoglobulins in their surface—that is mainly B lymphocytes</td>
</tr>
</tbody>
</table>

Rosette Assays

These were used to test for the presence of receptors for the activated third component of complement (C3 receptors) and the Fc portion of IgG (Fc gamma receptors). Ox erythrocytes coated with rabbit IgM antibody and complement, or with a rabbit IgG antibody were used\(^7\) \(^8\) respectively. IgM coated or uncoated ox erythrocytes were used as controls.

Cytochemistry

Cytochemical investigation was done on cryostat sections (8\(\mu\)m) and included staining for acid phosphatase and alpha-naphthyl acetate esterase\(^9\), alkaline phosphatase\(^10\) and 5-nucleotidase and adenosine triphosphatase\(^11\).

Electron Microscopy

Small tissue blocks were postfixed in 1.5% osmium tetroxide and dehydrated in a graded series of alcohol solutions. The specimens were then embedded in Epon 812. A semithin section was used to select a representative area, the specimen was trimmed, cut ultrathin and stained with uranyl acetate and lead citrate.

Diagnosis of the different subtypes of large-cell lymphoma

The diagnosis of each subtype of lymphoma was based on the morphological criteria defined by Gerard-Marchant et al\(^12\) and Lennert et al\(^13\) for the tumours of lymphoid origin and on the criteria of van der Valk et al\(^14\) for true histiocytic lymphomas. The diagnosis was supported by the following marker criteria:

Centroblastic lymphomas must have monoclonal surface immunoglobulins (slg) and moderate to strong C3 receptors as demonstrated with the red-cell overlayer technique but no or weak intracytoplasmic immunoglobulins (clg).

B-immunoblastic lymphomas had both slg and clg but no or very weak C3 receptors.

Histiocytic sarcoma had no slg or clg, but showed C3 and Fc gamma receptors, diffuse granular, cytoplasmic acid phosphatase as well as alpha-naphthyl acetate esterase activity. Lysozyme, alpha-I-antitrypsin and/or alpha-I-antichymotrypsin were also demonstrable in the cytoplasm.

The one case of malignant histiocytosis showed the same marker characteristics as the histiocytic sarcomas. Morphological criteria of Byrne and Rappaport were used\(^15\).
Table 2(a) Results of staining with monoclonal antibodies: tumour cells

<table>
<thead>
<tr>
<th>Histocytic sarcoma</th>
<th>B A1</th>
<th>B A2</th>
<th>HLA-DR</th>
<th>C3b</th>
<th>OKM1</th>
<th>MAC1</th>
<th>aHM1</th>
<th>NA1/34</th>
<th>Ig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>70%</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>70%+</td>
<td></td>
<td>80%*</td>
<td>70%*</td>
<td>50%*</td>
<td>+</td>
<td>weakly</td>
<td>70%*</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>80%+</td>
<td>few</td>
<td>90%*</td>
<td>70%*</td>
<td>60%*</td>
<td>50%*</td>
<td>weakly</td>
<td>70%*</td>
<td>few</td>
</tr>
<tr>
<td>4</td>
<td>80%+</td>
<td></td>
<td>70%*</td>
<td>50%*</td>
<td></td>
<td></td>
<td></td>
<td>70%*</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>60-70%</td>
<td>few*</td>
<td>60%*</td>
<td>40%*</td>
<td>50%*</td>
<td>70%*</td>
<td>30%*</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Malignant histiocytosis</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Centroblastic lymphoma</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Immunoblastic lymphoma</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

*Intracytoplasmic
Percentage estimated semiquantitatively from the total number of tumour cells.
Monoclonal antibodies described in Table 1.
Ig = class of immunoglobulin.

Table 2(b) Results of staining with monoclonal antibodies: admixed cells

<table>
<thead>
<tr>
<th>(T lymphocytes)</th>
<th>Leu1, Pen-T</th>
<th>Leu3a, OKT4 helper/inducer</th>
<th>Leu2a, OKT8 suppressor/cytotoxic</th>
<th>Estimated ratio H/S</th>
<th>HLA-DR, B A1, aHM1, OKM1, T A1, VIM-D5, OKM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histiocytic sarcoma</td>
<td>1</td>
<td>25%</td>
<td>10-15%</td>
<td>10-15%</td>
<td>1:1</td>
</tr>
<tr>
<td>2</td>
<td>25%</td>
<td>10-15%</td>
<td>10-15%</td>
<td>1:1</td>
<td>20-30%</td>
</tr>
<tr>
<td>3</td>
<td>10-20%</td>
<td>10-15%</td>
<td>10-15%</td>
<td>1:1</td>
<td>20-30%</td>
</tr>
<tr>
<td>4</td>
<td>5-10%</td>
<td>5-10%</td>
<td>5-10%</td>
<td>1:1</td>
<td>20-30%</td>
</tr>
<tr>
<td>5</td>
<td>5-10%</td>
<td>5-10%</td>
<td>5-10%</td>
<td>1:1</td>
<td>20-30%</td>
</tr>
</tbody>
</table>

Percentage estimated semiquantitatively from total number of cells in a tumour.

Demonstration of antigens on frozen tissue sections
Frozen tissue sections were cut at 6μm. The sections were dried, fixed in acetone (10min) dried again and left in the freezer for at least 30 min. They were then dried and fixed again (acetone, 10 min) and the immunoperoxidase procedure was started. An indirect technique was used. The monoclonal and heterologous antisera used and their specificity are given in Table 1. The anti-C3b receptor serum was prepared by immunising rabbits with highly purified human erythrocyte C3b receptors (anti-CR1). It was purified as described by Fearon. The antiserum recognises glycoprotein with a molecular weight of 213 000. In this study the IgG fraction of the antiserum was used. As a second step for the monoclonal mouse-antibodies a rabbit-antimouse IgG tagged with
The heterologous horseradish peroxidase (Dakopatts, Denmark) was used. The heterologous rabbit antisera (kappa, lambda, alpha, gamma, mu, anti C3b receptor and common acute lymphoblastic leukaemia antigen (CALLA)) were followed by the goat-antirabbit IgG, prepared in our laboratory. All antisera were first tested on normal tissues—for example, lymph node, spleen, tonsil, thymus, and for NA1/34 and OKT6, on skin. Controls were performed by replacing the monoclonal antibody with phosphate-buffered saline.

Results

The results are summarised in Tables 2 (a) and (b). The histiocytic sarcomas showed a typical staining pattern. The tumour cells stained positive with TA1, antihuman monocyte 1 (Fig. 1), weakly with OKM1 and Macl and also with HLA-DR and anti-C3b receptor. A varying percentage stained positive with NA1/34. TA1 and antihuman monocyte 1 were most effective, whereas OKM1 and Macl staining of histiocytes was weak; OKM1 staining of granulocytes was much stronger. No tumour cells stained positive with Leu1, Leu2a, Leu3a, OKT3, OKT4, OKT6, OKT8, BA2, VIM-D5, anti-elastase, CALLA or for kappa, lambda, alpha, mu, gamma or on cell membranes. The positive staining of the tumour cells was always intracytoplasmic, only HLA-DR being discernible on membranes occasionally. Admixtured was low in three cases (cases 2, 3, 4) and somewhat higher in 2 (cases 1, 5). T lymphocytes tended to predominate and approximately equal numbers on Leu3a (helper/inducer T phenotype) and Leu2a (suppressor/cytotoxic T phenotype) were found. B lymphocytes were relatively scarce except in case 1. In the case of malignant histiocytosis the staining pattern of the tumour cells was identical to that of the histiocytic sarcomas.

The centroblastic lymphomas showed a positive staining with the anti-C3b receptor (Fig. 2) and HLA-DR antisera. With the latter, however, only a quarter of the tumour cells stained positive in two cases (cases 4, 5) and staining was weak in two other cases (cases 1, 2). With BA1 only one case showed a few positive tumour cells (case 4) while with BA2 half the tumour cells were positive in case 5 and a few were positive in cases 1 and 2. Again the number of admixed cells was low (Table 2(b)) and as with the histiocytic sarcoma equal numbers of Leu3a and Leu2a positive cells were found. Varying numbers of macrophages were present, up to 20% in one case (case 5).

Although in B-immunoblastic lymphomas a staining

![Fig. 1](histiocytic_sarcoma.jpg)
Fig. 1 Histiocytic sarcoma. (a) Giemsa-stained, methyl-methacrylate-embedded section. Cells have abundant cytoplasm and pronounced nuclear irregularity. × 350 (b) TA1 staining. Many cells show intracytoplasmic staining (arrows). × 140 (c) Staining with anti-human monocyte 1. Most cells stain positive. × 140
Fig. 2 Centroblastic lymphoma. (a) Giemsa-stained methyl-methacrylate-embedded section. Note the multiple, mostly marginal nucleoli. ×350 (b) Staining with the anti C3b receptor serum. Tumour cells are positive. ×140

Fig. 3 B-immunoblastic lymphoma. (a) Giemsa-stained methyl-methacrylate-embedded section. Tumour cells have moderate cytoplasm. Most nuclei have a conspicuous central nucleolus. ×350 (b) HLA-DR staining. Tumour cells are positive the antiserum stains the membranes. ×140 (c) BA-1 staining. Most cells are positive staining occasionally is intense. ×140
pattern that resembled that of the centroblastic lymphomas was found, differences were noted. The staining for HLA-DR was strong to very strong in all but one case (case 4), while anti-C3b receptor staining was much weaker than in centroblastic lymphomas, or was absent. BA1 staining was observed in four or five cases varying from a few positive tumour cells (case 3 only) to a high proportion of tumour cell positive in cases 1 and 5. In two cases BA2 staining was found (cases 3 and 4). The staining pattern is illustrated in Fig. 3.

With VIM-D5 and anti-elastase in some cases granulocytes were identified and BA2 was found to stain vessels and fibrocytes.

Discussion

Even though the number of cases investigated was small, the results of this study confirm the usefulness of monoclonal and heterologous antibodies in distinguishing effectively histiocytic sarcoma from B-immunoblastic and centroblastic lymphoma. A gradual difference was noted between these two B-lymphoid tumours, albeit a slight one. The neoplastic cells of the histiocytic sarcomas stained with the antibodies known to be reactive with antigens on monocytes/macrophages: antihuman monocyte 1, OKM1 and Mac1 (rather weak) TA1, HLA-DR and anti-C3b receptor. This and the absence of staining with VIM-D5 and anti-elastase makes a myeloid origin of these tumours very unlikely. Staining with NA1/34 was also observed. This antisera proved reactive with thymocytes, Langerhans cells and interdigitating reticulum cells, like OKT6, as was reported by Murphy et al. The latter two types of cells are thought to be monocytoid derived, which may explain the staining of histiocyes. OKT6, however, was negative throughout. The one case of malignant histiocytosis showed a staining pattern identical to the five histiocytic sarcomas.

Between B-immunoblastic and centroblastic lymphomas a gradual difference was noted in the staining for HLA-DR, anti-C3b receptor and BA1. The tumour cells of B-immunoblastic lymphoma stained weakly or not at all with anti-C3b receptor but strongly with HLA-DR (though one case was almost completely negative) and BA1 staining for varying numbers of cells was seen. In centroblastic lymphoma this pattern was reversed: positive staining with anti-C3b receptor, weaker staining with HLA-DR and virtual absence of the BA1 antigen. BA2 proved to be present on three cases of centroblastic and two cases of B-immunoblastic lymphoma. This monoclonal antibody is raised against B-cells in a very early developmental stage and its appearance so much later in the development of the B lymphocyte is strange. Positive staining of centroblastic lymphomas with another “early” antigen—that is CALLA, has been reported (W Knapp, personal communication 1982). We were not able to demonstrate CALLA on our cases, but these findings are a reminder that caution is warranted in regarding CALLA and BA2 as maturation antigens.

It must be stressed that the difference between B-immunoblastic and centroblastic lymphomas is a gradual one and not absolute. It has already been shown that centroblastic lymphoma can be polymorphic in cell types, with frequent admixture of immunoblasts. Morphometrically the same observation has been demonstrated. Another observation is the immunological heterogeneity of both centroblastic and immunoblastic lymphomas, best illustrated by the results for BA1 and BA2 staining. Recent studies on isolated non-Hodgkin’s lymphoma cells by Godal et al have shown similar findings for other lymphomas.

The reactive cells present in the tumour were also studied. Most of the large-cell lymphomas showed little admixture with reactive cells. Cases 1 and 5 of histiocytic sarcomas, case 2 of centroblastic and case 5 of B-immunoblastic lymphomas showed more substantial admixture. Whatever the number of admixed cells the pattern did not differ much; approximately equal numbers of T and B lymphocytes were found, with a tendency of predominance of the T cells. The distribution of the different T cell subsets showed a shift in the ratio of helper/inducer (Leu3a/OKT4+) and suppressor/cytotoxic (Leu2a/OKT8+) cells. This ratio normally is 2–3:1, but here varied between 1:1 and 2:1. This appeared to be slightly more pronounced in histiocytic sarcoma and centroblastic lymphoma but as the number of T lymphocytes was generally low, these findings must be interpreted with caution. Although no double-labelling experiments were done, studies on adjacent sections did not suggest that large numbers of cells positive for both Leu2a and Leu3a were present. Similarly, cells staining for both HLA-DR and Leu1, the phenotype of activated T cells, were not present in large numbers though it was difficult to compare these two antigens in most cases of B-immunoblastic lymphomas where HLA-DR staining of tumour cells was strong. In both B-lymphoid tumours a fairly large number of macrophages/histiocytes was observed (up to 20% in one case).

In conclusion the monoclonal antibodies TA1, antihuman monocyte 1, OKM1, Mac1 and NA1/34 can be used to differentiate histiocytic sarcoma from the other large-cell lymphomas. The differentiation between B-immunoblastic and centroblastic lymphoma remains difficult, because the diagnostic classes appear to be morphologically and immunologically heterogeneous. The presence of strong HLA-DR staining, with weak or absent anti-C3b receptor staining and the presence or absence of BA1 antigen may be helpful. The results underline the assumption that the diagnosis of non-Hodgkin’s lymphomas should not be based on studies with monoclonal and/or heterologous antibodies alone, but requires other techniques as well, such as cytochemistry, electron microscopy and morphometry.
The authors wish to thank Drs J Kersey and J Jansen for the BA1, BA2 and TA1 antisera, and Dr W Knapp for the VIM-D5 antiserum, and Mrs R J J R Scholte for typing the manuscript.

References

6 Kramps JA, Van der Valk P, Moonen HWD, Meijer CILM. Anti-elastase: a rabbit-antihuman antibody recognising polymorphonuclear elastase (manuscript submitted).

Requests for reprints to: Dr P van der Valk, Department of Pathology, University Medical Centre, PO Box 9603, 2300 RC Leiden, The Netherlands.
Analysis of large-cell lymphomas using monoclonal and heterologous antibodies.
P van der Valk, G van den Besselaar-Dingjan, M R Daha and C J Meijer

doi: 10.1136/jcp.36.1.44

Updated information and services can be found at:
http://jcp.bmj.com/content/36/1/44

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/