Changes in the blood platelets of alcoholics during alcohol withdrawal

RICHARD FINK,* RONALD A HUTTON

From the Departments of Haematology and *Chemical Pathology, Royal Free Hospital, Pond Street, London NW3 2QG

SUMMARY The effects of alcohol withdrawal on platelet count and platelet function was studied sequentially in a group of alcoholics. Baseline values for platelet count, platelet adenine nucleotides and plasma beta-thromboglobulin (βTG) level were within the normal range but platelet aggregability (especially with ADP and adrenaline) and circulating platelet aggregates were decreased for the group as a whole.

After alcohol withdrawal there was a pronounced increase in all parameters measured which reached statistical significance in many cases and persisted for two to four weeks.

The potential implications and possible mechanisms for these changes are discussed.

Excess alcohol consumption is associated with an increased risk of cerebrovascular stroke and thromboembolic disease. Alcohol induced hypertension is one possible cause of these disorders, although abnormal platelet function might also be a factor in their pathogenesis.

While thrombocytopenia and decreased platelet function during alcohol ingestion is documented, little information is available concerning platelet function in alcoholics during and after alcohol withdrawal. As intermittent heavy drinking is a common pattern of alcohol abuse, we have investigated platelet function in a group of alcoholics on the day of admission to a treatment unit, and sequentially during four weeks of supervised abstinence.

Patients and methods

The subjects studied were selected from those whose drinking problem led to admission to hospital for “drying out” and psychotherapy. All had been drinking excessively up to the day of admission and had measurable blood alcohol concentrations (20–160 mg/100 ml) at that time. Those who could not positively deny having ingested drugs known to affect platelet function for at least 10 days prior to admission were excluded. Twenty-four subjects entered the study and 18 completed the four-week trial period. Of the patients who failed to complete the study, three discharged themselves within the first week and three inadvertently received drugs affecting platelet function. Therapy for suppression of the withdrawal syndrome consisted of complete bed rest for two days and the administration of two sedative drugs Epanutin and chlormethiazole for up to five days. Thereafter, only an occasional mild sedative (nitrazepam or diazepam) at night and vitamin preparations were given. All subjects had been eating, albeit somewhat irregularly up to the time of admission and none was grossly malnourished. During the study all subjects were fed a normal hospital diet.

Controls were normal hospital personnel with the same sex ratio and covering a similar age range to the alcoholics. None smoked more than 20 cigarettes/day or admitted taking more than an occasional alcoholic beverage. Prior to study, none had ingested alcohol for at least 72 h or antiplatelet drugs for at least two weeks.

Blood was collected with minimal stasis through a 19-gauge butterfly infusion set using a two-syringe technique and discarding the first 5 ml. Samples were collected on the day of admission (day 1) on days 3 or 4 and 7 or 8 and then at weekly intervals for at least three weeks thereafter. Liver function tests, blood alcohol estimation, platelet count, platelet aggregation studies and platelet adenine nucleotide assays were performed as previously described. Blood for plasma βTG level was collected into an anticoagulant mixture containing EDTA, theophylline and adenosine (final concentrations 0.013 mol/l, 0.001

Accepted for publication 4 October 1982
mol/l and 0·002 mol/l respectively) and measured by a
double antibody radioimmunoassay, the second
antibody being immobilised on Sepharose 4B. Circulating platelet aggregates were measured by the
method of Wu and Hoak but enumerating the
unchumped platelets in a haemocytometer.

Results

Clinical Observations
One subject had infected cuts on the wrist on
admission, which responded to antibiotic therapy
over five days. None showed clinical evidence of
cirrhosis or hepatitis and although mild to moderate
disturbances of liver function were present in most
subjects, none was frankly jaundiced. Symptoms of
alcohol withdrawal were minimal and were restricted
to the first week of the programme. No clinically
overt thrombotic lesions developed during the study
or were elicited in the previous histories.

Platelet Studies
Results are shown in the Figure. None of the subjects
was thrombocytopenic on admission, but all except
two (whose initial counts were high) showed a rise in
platelet count which peaked at two weeks and which
was significantly raised for the group as a whole at
weeks 2 (p = 0·001) and 3 (p = 0·025).
Platelet aggregability was invariably depressed on
admission. The most striking change was the absence
of secondary aggregation, although in some cases the
primary wave was also reduced. The defect was
maximal with adenosine diphosphate (ADP) and
adrenaline as agonists but in many cases was also
observed with collagen and ristocetin. During the first
week after alcohol withdrawal, platelet aggregability
was variable. In those whose defect was most marked
on admission, improved responses were usually seen.
In milder cases, platelet function often decreased
initially. However, by seven to 14 days after with-
drawal, compared to controls, all subjects had
hyperaggregable platelets and again, this was most
obvious with ADP and adrenaline where it reached
statistical significance (p = 0·01). Over the ensuing
two to three weeks, platelet aggregability gradually
returned towards control values, more or less in line
with the platelet count.

Although a few subjects had slightly raised β TG
concentrations on admission, results were within the
normal range for the group as a whole. After
withdrawal, concentrations rose in most cases, often
dramatically and mean values remained significantly
(p = 0·005) above normal until week 4, peak
concentrations being found at seven to 14 days in
different individuals.

On admission, circulating platelet aggregates were
close to zero and significantly (p = 0·002) lower than
in controls. During alcohol withdrawal, a significant
increase occurred and the mean level exceeded the
normal range (15%) (p = 0·001) at weeks 2 and 3.
Slightly low concentrations of ATP and ADP were
observed in a few patients initially. Values rose
steadily over three weeks at which point the total
content was significantly (p = 0·01) above baseline.
Mean results for total nucleotides and ATP:ADP
ratio were within the normal range throughout.

Discussion

We have demonstrated significant increases in a
number of accepted laboratory markers of in vivo
platelet activation in a group of heavy drinkers during
alcohol withdrawal. On admission all subjects were
alcoholomaemic and showed decreased platelet aggreg-
ability, but within a few days of commencing
withdrawal, increases in platelet count, platelet
aggregability, circulating platelet aggregates and
β TG concentrations occurred in all subjects. These
values peaked significantly above the normal range.
but had returned to the reference range by four weeks.

Platelet hyperaggregability, increase of circulating platelet aggregates or β TG concentrations are found in myocardial infarction, transient ischaemic attacks and in conditions such as diabetes mellitus in which an increased risk of thrombosis occurs. The reason why the alcoholics in the present study did not show clinical evidence of thromboembolism could relate to the absence of additional risk factors such as dehydration, congestive cardiac failure or cardiac arrhythmia. Alternatively, subclinical thrombosis may have occurred. The cerebral microcirculation is a possible site for this increased thrombotic activity, as previous studies have shown that cerebral blood flow is reduced by 30% during alcohol withdrawal.

In contrast to the present study, previous workers have reported deep vein thrombosis and pulmonary embolus in 4/7 alcoholics after admission to hospital, and suggested that these complications were associated with “rebound thrombocytosis” observed seven days after cessation of drinking. Non-alcoholics recovering from an alcoholic binge also appear to be at risk from thrombosis, with a recent study of cerebrovascular accidents in patients under the age of 40 yr, showing that in 15% of cases, illness was preceded by excess alcohol consumption. A high incidence of pulmonary embolus occurs in association with alcoholic cardiomyopathy and a significant proportion of normotensive men under the age of 50 yr presenting with cerebral thrombosis have been shown to be heavy drinkers. However, neither of these latter two studies specify whether the thromboembolic episode coincided with drinking or abstinence.

The aetiology of the platelet changes is uncertain. Increased platelet aggregability may be partly attributable to influx into the circulation of newly formed platelets with increased functional potential since it occurred concurrently with rises in platelet count and platelet adenine nucleotides. Since platelet age and size are inversely correlated, this suggestion is in accord with previous work showing increased platelet size during alcohol withdrawal. Catecholamine release can cause platelet activation but the sympathetic response to alcohol withdrawal subsides within two days of abstinence and would not therefore account for changes observed 14 days after cessation of drinking. Similarly, although hypertriglyceridaemia is a common finding in alcoholics, this abnormality generally corrects within four to five days after complete alcohol withdrawal. More speculatively, it has been reported that the intraplatelet level of the aggregation inhibiting prostaglandin PGE, falls to below normal during alcohol withdrawal and this might promote platelet aggregation. No data on the time course of this phenomenon or of its significance are available and further studies are required.

With regard to our finding of platelet hypaggregability during alcoholohaemostasis, this is previously described and may be relevant to the observation that moderate levels of alcohol consumption is associated with protection from acute myocardial infarction. Unfortunately with larger dosage, cardiovascular mortality increases but it is unknown whether death occurs during alcohol consumption or during withdrawal. If the latter is shown to be the case, then the findings of the present study will prove to be of considerable clinical importance.

We would like to thank Dr DT Wilson and Dr DH Marjot for permission to study subjects under their care and the staff of the Addiction Unit at St Bernard’s Hospital for their generous assistance in the organisation of this study.

References


Requests for reprints to: Dr RA Hutton, Department of Haematology, Royal Free Hospital, Pond Street, London NW3 2QG, England.
Changes in the blood platelets of alcoholics during alcohol withdrawal.
R Fink and R A Hutton

doi: 10.1136/jcp.36.3.337

Updated information and services can be found at:
http://jcp.bmj.com/content/36/3/337

These include:
Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/