Phenomenon of resistance to Augmentin associated with sensitivity to ampicillin: occurrence and explanation

W BRUMFITT, JMT HAMILTON-MILLER, SHIRLEY DIXSON, RA GARGAN, ANN GOODING

From the Department of Medical Microbiology, Royal Free Hospital and School of Medicine, Pond Street, London NW3 2QG

SUMMARY Amoxicillin was found to be some tenfold more active than amoxycillin against Enterobacter cloacae. This finding explains the observation that some Ent cloacae strains are sensitive to ampicillin in the disc test but resistant to Augmentin. Amoxicillin was also found to be more active than amoxycillin against Citrobacter freundii and Serratia marcescens. In view of these findings, the practice of using ampicillin discs to predict sensitivity to amoxycillin should be reconsidered. The use of both ampicillin and amoxicillin discs is appropriate if errors are to be avoided.

Amoxicillin has been shown to be at least as active in vitro as ampicillin against many pathogenic bacteria with notable exceptions, such as Haemophilus influenzae. Its bactericidal action in vitro and its effectiveness in vivo seems to be superior to that of ampicillin. Further, amoxicillin is absorbed by mouth almost twice as well as ampicillin. Because of these properties, amoxicillin can be given in a smaller dose and less frequently than ampicillin, and it now enjoys wide clinical use.

In the laboratory, it is recommended both in the UK and USA that sensitivity testing to amoxicillin be carried out using ampicillin discs. This is an example of what Barry and Thornsberry call “class” sensitivity testing, similar to that done in the USA by using a disc of cephalothin to determine sensitivity to the early cephalosporins (such as cephaloridine and cefazolin). The practice of “class” testing, however, may give highly misleading results if incorrectly applied. We have recently made some observations which cast serious doubts on the validity of “class” testing using an ampicillin disc. This investigation started when we isolated several strains of Enterobacter cloacae which appeared sensitive to ampicillin but resistant to Augmentin (amoxicillin + clavulanate) by disc testing (Figure). We briefly drew attention to this phenomenon, in a letter to the Lancet, and in this report we describe our findings in more detail.

Material and methods

ANTIBIOTICS
Ampicillin trihydrate and amoxicillin trihydrate were Laboratory Reference Standards nos 29 and 12, respectively, from Beecham Research Laboratories. Sodium ampicillin was obtained from the hospital pharmacy. Sodium amoxicillin and potassium clavulanate were generously supplied by Beecham Pharmaceuticals, Worthing.

BACTERIAL STRAINS
Twenty-nine strains of Enterobacter cloacae, 21 Citrobacter freundii and 13 Serratia marcescens were investigated. Four of the Ent cloacae strains had been isolated from patients who had recently received Augmentin, while all the other organisms were from our laboratory collection, which consists of bacteria freshly isolated from clinical material. Identification was by the API 20E system.

DISC SENSITIVITY TESTING
Augmentin discs (containing 20 µg amoxicillin plus 10 µg clavulanic acid) were obtained from Oxoid. We made discs containing 20 µg ampicillin, 20 µg amoxicillin and 20 µg ampicillin plus 10 µg clavulanic acid. This was done by impregnating Whatman AA discs with the appropriate dilutions of antibiotic.

Plates of Iso-Sensitest agar were flooded with a 1/100 dilution of overnight culture of the test organism. Plates were dried and then one of each of the
Phenomenon of resistance to Augmentin associated with sensitivity to ampicillin

Both plates show results of disc testing with an Enterobacter cloacae strain (top half of each plate). The bottom part of each plate was inoculated with a sensitive control strain of Escherichia coli. AP25 = ampicillin 25 μg; A25 = amoxicillin 25 μg; AUG = amoxicillin 20 μg + clavulanic acid 10 μg. The results shown in left hand plate are confusing if ampicillin is used as a “class” test (see text). This apparently paradoxical phenomenon is explained by the result shown in the right hand plate, namely that the strain is sensitive to ampicillin but resistant to amoxicillin and Augmentin.

Discs described above were placed on the surface. Plates were incubated overnight at 37°C and zone diameters measured with a millimetre rule. When zone sizes were being compared, a difference of 5 mm or more was regarded as being significant.

MIC determinations

These were made by a plate doubling dilution method with Iso-Sensitest agar. Inoculum sizes of 10⁶ and 10⁷ bacteria were applied to plates by means of a multipoint inoculating device (Denley); plates were read after overnight incubation.

Detection of destruction of amoxycillin

Organisms were grown in a nutrient broth (3 ml) overnight at 37°C; 3 ml of a solution of amoxycillin (6 mg/ml in sodium phosphate buffer pH 8) was added and the mixture incubated at 37°C for 6 h. The amount of amoxycillin remaining was then assayed by the hydroxylamine method. It was found that strains either destroyed all the amoxycillin, or none at all. Strains which destroyed amoxycillin under these conditions are called “penicillinase-producing” strains.

Results

As stated earlier, we first observed the apparently paradoxical phenomenon of an organism being ampicillin-sensitive but Augmentin-resistant when testing Ent cloacae. We therefore screened other bacterial species for further evidence of the phenomenon. It was detected only in C freundii and S marcescens, in both of which species it was unusual.

Twenty-one C freundii strains were examined. They fell naturally into two populations:

(a) 14 strains were sensitive to ampicillin, amoxicillin and Augmentin by the disc test. Ampicillin was slightly more active (two to threefold) than amoxicillin against these strains (Table). None of the 14 strains was a penicillinase producer, and clavulanate did not enhance the activity of either ampicillin or amoxicillin. Ampicillin was significantly more active than Augmentin in the disc test against three strains.

(b) the remaining seven strains were resistant to ampicillin and to amoxicillin, but sensitive to Augmentin, in the disc test. MICs for these strains were about 100-fold higher that for sensitive strains (Table); ampicillin was again more active than amoxicillin. All seven strains produced penicillinase.

All 13 S marcescens strains showed rather small zones around the ampicillin, amoxicillin and Augmentin discs. Results of MIC determinations indicated that, overall, ampicillin was slightly more active (at most, twofold) than amoxicillin (Table). None of the strains produced penicillinase, and clavulanate did not enhance the activity of either ampicillin or amoxicillin. In four strains ampicillin was significantly more active than Augmentin.

Twenty-nine strains of Ent cloacae fell into two groups.

(a) 24 strains did not produce penicillinase; all were
Inhibitory concentration of ampicillin and amoxycillin against Enterobacter cloacae, Citrobacter freundii and Serratia marcescens strains. Data show that ampicillin and amoxycillin may have greatly differing activities, in terms of 150 and 190, for both large and small inocula.

<table>
<thead>
<tr>
<th>Bacterial species</th>
<th>β-Lactamase activity</th>
<th>No of strains</th>
<th>Inhibitory concentrations (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^8 organisms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AMP AMOX AMP AMOX AMP AMOX AMP AMOX</td>
</tr>
<tr>
<td>Ent cloacae</td>
<td>-</td>
<td>24</td>
<td>7 80 30 410</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>5</td>
<td>>1024 >1024 >1024 >1024</td>
</tr>
<tr>
<td>C freundii</td>
<td>-</td>
<td>14</td>
<td>2.7 6.4 7.6 15</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>7</td>
<td>210 800 >1024 >1024</td>
</tr>
<tr>
<td>S marcescens</td>
<td>-</td>
<td>13</td>
<td>15 11.5 50 70</td>
</tr>
</tbody>
</table>

* 150 and 190 = inhibitory concentrations of 50% and 90%, respectively, of strains tested.
† Ability to destroy amoxycillin (see methods).

sensitive to ampicillin by the disc test, and for 16 the zone size around the amoxycillin disc was at least 5 mm smaller than that around the ampicillin disc. Clavulanate did not appear to enhance the activity of either ampicillin or amoxycillin. The MIC of ampicillin was about one-tenth that of amoxycillin (Table). Fifteen strains in this group appeared to be sensitive to ampicillin but resistant of Augmentin. It is this type of resistance pattern which first suggested to us that Ent cloacae may be more sensitive to ampicillin than to amoxycillin. These 15 strains were distributed amongst eight different API biotypes. The other five strains destroyed amoxycillin, and were highly resistant to both ampicillin and amoxycillin (Table). They were also resistant to Augmentin and four were resistant to the ampicillin/clavulanate disc.

Discussion

As the first four strains of Ent cloacae resistant to Augmentin but sensitive to ampicillin which we isolated came within a few weeks from patients whom we had treated with Augmentin, our first thought was that these may be atypical strains which had been selected by the use of Augmentin. However, subsequently—over a period of some 12 months—we have only isolated one other such strain, from a patient given cotrimoxazole. This finding, and our observations that this type of Ent cloacae was common among unselected strains collected in the clinical laboratory before Augmentin came into use and that many API types are involved, suggests that such selection does not in fact take place.

Ent cloacae was not very common in our hospital: during 1981, Enterobacter spp accounted for only 1.7% of species isolated in significant numbers from urines, and only 1.3% of blood culture isolates. It is therefore much less common than in USA, where this genus is responsible for between 4 and 10% of bacteraemias. C freundii is in our experience rarer than Enterobacter spp, and again much less commonly found than in USA. Finally, S marcescens is virtually unknown in this hospital, although it has been reported from other centres in Great Britain.

The phenomenon of sensitivity to ampicillin coupled with resistance to Augmentin, which at first appeared to be an anomalous finding, is totally explained by the much greater activity of ampicillin (tenfold) than of amoxycillin against Ent cloacae (see Figure). The phenomenon was only noticed because we, like almost all other laboratories in this country, used “class” testing for determining sensitivity to amoxycillin. We now strongly recommend that where amoxycillin is in clinical use an amoxycillin disc be used for sensitivity testing, rather than ampicillin. This would also be helpful in the case of Haemophilus influenzae, against which ampicillin is also more active than amoxycillin. In view of the existence of organisms such as Enterobacter spp which show a differential sensitivity, testing against both ampicillin and amoxycillin discs may be necessary.

We were surprised that so many strains of Enterobacter spp and S marcescens were sensitive to ampicillin. These genera have been widely regarded as highly resistant to ampicillin, from the earliest days following the introduction of ampicillin. Before the advent of a rapid numerical taxonomic system—such as the API 20E system used in the present study—it was difficult to identify Enterobacter spp accurately, and indeed these strains used not to be separated from other biochemically related organisms, but were classified under the broad head-
Phenomenon of resistance to Augmentin associated with sensitivity to amoxicillin

...ing11 “Klebsiella-Enterobacter-Serratia”. However, in a major study by Toala et al.,12 in which Ent cloacae and Ent aerogenes were fully identified, none of 199 strains of either species was inhibited by 100 μg/ml of amoxicillin. It may be that the API 20E system identifies organisms as Enterobacter spp which would have been classified as other species by conventional means.

It is perhaps coincidence that the genera in which we were able to detect the phenomenon of ampicillin sensitivity but resistance to Augmentin and amoxicillin all produce a type 1 β-lactamase. This type of enzyme is a cephalosporinase, which hydrolyses ampicillin very slowly.13-17 However, we have not found any data on the rate of hydrolysis of amoxicillin by this enzyme. Crump and Cansdale18 have suggested that clavulanate may induce type 1 β-lactamase, so that amoxicillin is destroyed more rapidly if it is present with clavulanate than if present alone. This type of mechanism has been shown to explain resistance of Ent cloacae to cefamandole in the presence of cefoxitin. The latter compound is an inducer of Enterobacter β-lactamase but inactive against this genus. The induced enzyme destroys cefamandole and thus causes resistance.19 Although we have not formally investigated the possibility that β-lactamase induction may occur, it seems unlikely to be of major importance in view of our finding that zone sizes around Augmentin discs were only rarely significantly smaller than those around amoxicillin alone. This effect was found for only three strains of the 63 tested (two S marcescens and one C freundii), and in no case did the presence of clavulanate decrease the activity of amoxicillin.

Various other mechanisms have been called upon to explain the resistance of Ent cloacae to β-lactam antibiotics,20,21 and it seems that much more work will be necessary before the exact resistance mechanism in this intriguing genus are fully understood.

We are grateful to Dr G N Rolinson and Dr R Sutherland of Beecham Research Laboratories for valuable discussions.

References

Requests for reprints to: Professor W Brumfitt, Department of Medical Microbiology, The Royal Free Hospital, Pond Street, London NW3 2QG, England.
Phenomenon of resistance to Augmentin associated with sensitivity to ampicillin: occurrence and explanation.
W Brumfitt, J M Hamilton-Miller, S Dixson, R A Gargan and A Gooding

doi: 10.1136/jcp.36.6.670

Updated information and services can be found at:
http://jcp.bmj.com/content/36/6/670

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/