Phenomenon of resistance to Augmentin associated with sensitivity to ampicillin: occurrence and explanation

W BRUMFITT, JMT HAMILTON-MILLER, SHIRLEY DIXSON, RA GARGAN, ANN GOODING

From the Department of Medical Microbiology, Royal Free Hospital and School of Medicine, Pond Street, London NW3 2QG

SUMMARY Amoxicillin was found to be some tenfold more active than amoxycillin against Enterobacter cloacae. This finding explains the observation that some Ent cloacae strains are sensitive to ampicillin in the disc test but resistant to Augmentin. Amoxicillin was also found to be more active than amoxycillin against Citrobacter freundii and Serratia marcescens. In view of these findings, the practice of using ampicillin discs to predict sensitivity to amoxycillin should be reconsidered. The use of both ampicillin and amoxycillin discs is appropriate if errors are to be avoided.

Amoxicillin has been shown to be at least as active in vitro as ampicillin against many pathogenic bacteria with notable exceptions, such as Haemophilus influenzae. Its bactericidal action in vitro and its effectiveness in vivo seems to be superior to that of ampicillin. Further, amoxicillin is absorbed by mouth almost twice as well as ampicillin. Because of these properties, amoxicillin can be given in a smaller dose and less frequently than ampicillin, and it now enjoys wide clinical use.

In the laboratory, it is recommended both in the UK and USA that sensitivity testing to amoxicillin be carried out using ampicillin discs. This is an example of what Barry and Thornberry call "class" sensitivity testing, similar to that done in the USA by using a disc of cephalothin to determine sensitivity to the early cephalosporins (such as cephaloridine and cefazolin). The practice of "class" testing, however, may give highly misleading results if incorrectly applied. We have recently made some observations which cast serious doubts on the validity of "class" testing using an ampicillin disc. This investigation started when we isolated several strains of Enterobacter cloacae which appeared sensitive to ampicillin but resistant to Augmentin (amoxicillin + clavulanate) by disc testing (Figure). We briefly drew attention to this phenomenon, in a letter to the Lancet, and in this report we describe our findings in more detail.

Material and methods

ANTIBIOTICS

Ampicillin trihydrate and amoxycillin trihydrate were Laboratory Reference Standards nos 29 and 12, respectively, from Beecham Research Laboratories. Sodium ampicillin was obtained from the hospital pharmacy. Sodium amoxicillin and potassium clavulanate were generously supplied by Beecham Pharmaceuticals, Worthing.

BACTERIAL STRAINS

Twenty-nine strains of Enterobacter cloacae, 21 Citrobacter freundii and 13 Serratia marcescens were investigated. Four of the Ent cloacae strains had been isolated from patients who had recently received Augmentin, while all the other organisms were from our laboratory collection, which consists of bacteria freshly isolated from clinical material. Identification was by the API 20E system.

DISC SENSITIVITY TESTING

Augmentin discs (containing 20 μg amoxicillin plus 10 μg clavulanic acid) were obtained from Oxoid. We made discs containing 20 μg ampicillin, 20 μg amoxicillin and 20 μg ampicillin plus 10 μg clavulanic acid. This was done by impregnating Whatman AA discs with the appropriate dilutions of antibiotic.

Plates of Iso-Sensitest agar were flooded with a 1/100 dilution of overnight culture of the test organism. Plates were dried and then one of each of the
Phenomenon of resistance to Augmentin associated with sensitivity to ampicillin

Both plates show results of disc testing with an Enterobacter cloacae strain (top half of each plate). The bottom part of each plate was inoculated with a sensitive control strain of Escherichia coli. AP25 = ampicillin 25 μg; A25 = amoxycillin 25 μg; AUG = amoxycillin 20 μg + clavulanic acid 10 μg. The results shown in left hand plate are confusing if ampicillin is used as a “class” test (see text). This apparently paradoxical result is explained by the result shown in the right hand plate, namely that the strain is sensitive to ampicillin but resistant to amoxycillin and Augmentin.

Discs described above was placed on the surface. Plates were incubated overnight at 37°C and zone diameters measured with a millimetre rule. When zone sizes were being compared, a difference of 5 mm or more was regarded as being significant.

MIC determinations
These were made by a plate doubling dilution method with Iso-Sensitest agar. Inoculum sizes of 10^4 and 10^5 bacteria were applied to plates by means of a multipoint inoculating device (Denley); plates were read after overnight incubation.

Detection of destruction of amoxycillin
Organisms were grown in a nutrient broth (3 ml) overnight at 37°C; 3 ml of a solution of amoxycillin (6 mg/ml in sodium phosphate buffer pH 8) was added and the mixture incubated at 37°C for 6 h. The amount of amoxycillin remaining was then assayed by the hydroxylamine method. It was found that strains either destroyed all the amoxycillin, or none at all. Strains which destroyed amoxycillin under these conditions are called “penicillinase-producing” strains.

Results
As stated earlier, we first observed the apparently paradoxical phenomenon of an organism being ampicillin-sensitive but Augmentin-resistant when testing Ent cloacae. We therefore screened other bacterial species for further evidence of the phenomenon. It was detected only in C freundii and S marcescens, in both of which species it was unusual.

Twenty-one C freundii strains were examined. They fell naturally into two populations:
(a) 14 strains were sensitive to ampicillin, amoxycillin and Augmentin by the disc test. Ampicillin was slightly more active (two to threefold) than amoxycillin against these strains (Table). None of the 14 strains was a penicillinase producer, and clavulanate did not enhance the activity of either ampicillin or amoxycillin. Ampicillin was significantly more active than Augmentin in the disc test against three strains. (b) the remaining seven strains were resistant to ampicillin and to amoxycillin, but sensitive to Augmentin, in the disc test. MICs for these strains were about 100-fold higher that for sensitive strains (Table); ampicillin was again more active than amoxycillin. All seven strains produced penicillinase.

All 13 S marcescens strains showed rather small zones around the ampicillin, amoxycillin and Augmentin discs. Results of MIC determinations indicated that, overall, ampicillin was slightly more active (at most, twofold) than amoxycillin (Table). None of the strains produced penicillinase, and clavulanate did not enhance the activity of either ampicillin or amoxycillin. In four strains ampicillin was significantly more active than Augmentin.

Twenty-nine strains of Ent cloacae fell into two groups.
(a) 24 strains did not produce penicillinase; all were
Inhibitory concentration of ampicillin and amoxycillin against Enterobacter cloacae, Citrobacter freundii and Serratia marcescens strains. Data show that ampicillin and amoxycillin may have greatly differing activities, in terms of 150 and 190, for both large and small inocula.

<table>
<thead>
<tr>
<th>Bacterial species</th>
<th>β-Lactamase activity</th>
<th>No of strains</th>
<th>Inhibitory concentrations (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10^6 organisms</td>
<td>10^6 organisms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMP AMOX</td>
<td>AMP AMOX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMP AMOX</td>
<td>AMP AMOX</td>
</tr>
<tr>
<td>Ent cloacae</td>
<td>–</td>
<td>24</td>
<td>7 80 30 410</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>5</td>
<td>>1024 >1024 >1024 >1024</td>
</tr>
<tr>
<td>C freundii</td>
<td>–</td>
<td>14</td>
<td>2 7 6 4 7 6 15 8 15 60</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>7</td>
<td>210 800 >1024 >1024 >1024</td>
</tr>
<tr>
<td>S marcescens</td>
<td>–</td>
<td>13</td>
<td>15 11 5 50 70 27 58 100 120</td>
</tr>
</tbody>
</table>

* 150 and 190 = inhibitory concentrations of 50% and 90%, respectively, of strains tested.
† Ability to destroy amoxycillin (see methods).

sensitive to ampicillin by the disc test, and for 16 the zone size around the amoxycillin disc was at least 5 mm smaller than that around the ampicillin disc. Clavulanate did not appear to enhance the activity of either ampicillin or amoxycillin. The MIC of ampicillin was about one-tenth that of amoxycillin (Table). Fifteen strains in this group appeared to be sensitive to ampicillin but resistant of Augmentin. It is this type of resistance pattern which first suggested to us that Ent cloacae may be more sensitive to ampicillin than to amoxycillin. These 15 strains were distributed amongst eight different API biotypes. The other five strains destroyed amoxycillin, and were highly resistant to both ampicillin and amoxycillin (Table). They were also resistant to Augmentin and four were resistant to the ampicillin/clavulanate disc.

Discussion

As the first four strains of Ent cloacae resistant to Augmentin but sensitive to ampicillin which we isolated came within a few weeks from patients whom we had treated with Augmentin, our first thought was that these may be atypical strains which had been selected by the use of Augmentin. However, subsequently—over a period of some 12 months—we have only isolated one other such strain, from a patient given cotrimoxazole. This finding, and our observations that this type of Ent cloacae was common among unselected strains collected in the clinical laboratory before Augmentin came into use and that many API types are involved, suggests that such selection does not in fact take place.

Ent cloacae was not very common in our hospital: during 1981, Enterobacter spp accounted for only 1.7% of species isolated in significant numbers from urines, and only 1.3% of blood culture isolates. It is therefore much less common than in USA, where this genus is responsible for between 4 and 10% of bacteraemias.* C freundii is in our experience rarer than Enterobacter spp, and again much less commonly found than in USA†. Finally, S marcescens is virtually unknown in this hospital, although it has been reported from other centres in Great Britain.

The phenomenon of sensitivity to ampicillin coupled with resistance to Augmentin, which at first appeared to be an anomalous finding, is totally explained by the much greater activity of ampicillin (tenfold) than of amoxycillin against Ent cloacae (see Figure). The phenomenon was only noticed because we, like almost all other laboratories in this country, used "class" testing for determining sensitivity to amoxycillin. We now strongly recommend that where amoxycillin is in clinical use an amoxycillin disc be used for sensitivity testing, rather than ampicillin. This would also be helpful in the case of Haemophilus influenzae, against which ampicillin is also more active than amoxycillin. In view of the existence of organisms such as Enterobacter spp which show a differential sensitivity, testing against both ampicillin and amoxycillin discs may be necessary.

We were surprised that so many strains of Enterobacter spp and S marcescens were sensitive to ampicillin. These genera have been widely regarded as highly resistant to ampicillin, from the earliest days following the introduction of ampicillin. Before the advent of a rapid numerical taxonomic system—such as the API 20E system used in the present study—it was difficult to identify Enterobacter spp accurately, and indeed these strains used not to be separated from other biochemically related organisms, but were classified under the broad head-
ing
ding11 "Klebsiella-Enterobacter-Serratia". However,
in a major study by Toala \textit{et al.},12 in which \textit{Ent
cloacae} and \textit{Ent aerogenes} were fully identified,
none of 199 strains of either species was inhibited by
100 \(\mu \)g/ml of ampicillin. It may be that the API 20E
system identifies organisms as \textit{Enterobacter} spp
which would have been classified as other species by
conventional means.

It is perhaps coincidence that the genera in which
we were able to detect the phenomenon of ampicillin
sensitivity but resistance to Augmentin and
amoxycillin all produce a type 1 \(\beta \)-lactamase.
This type of enzyme is a cephalosporinase, which hydro-
lyses ampicillin very slowly.13–17 However, we have not
found any data on the rate of hydrolysis of
amoxycillin by this enzyme. Crump and Cansdale18
have suggested that clavulanate may induce type 1
\(\beta \)-lactamase, so that amoxycillin is destroyed more
rapidly if it is present with clavulanate than if pres-
ent alone. This type of mechanism has been shown to
explain resistance of \textit{Ent cloacae} to cefamandole
in the presence of cefoxitin. The latter compound
is an inducer of Enterobacter \(\beta \)-lactamase but inactive
against this genus. The induced enzyme destroys
cefamandole and thus causes resistance.19 Although
we have not formally investigated the possibility that
\(\beta \)-lactamase induction may occur, it seems unlikely
to be of major importance in view of our finding that
zone sizes around Augmentin discs were only rarely
significantly smaller than those around amoxycillin
alone. This effect was found for only three strains of
the 63 tested (two \textit{S marcescens} and one \textit{C freundii}),
and in no case did the presence of clavulanate
decrease the activity of ampicillin.

Various other mechanisms have been called upon
to explain the resistance of \textit{Ent cloacae} to \(\beta \)-lactam
antibiotics,20,21 and it seems that much more work
will be necessary before the exact resistance
mechanism in this intriguing genus are fully under-
stood.

We are grateful to Dr G N Rolinson and Dr R
Sutherland of Beecham Research Laboratories for
valuable discussions.

References

1 Sutherland R, Croydon EAP, Rolinson GN. Amoxycillin: a new

2 Hunter PA, Rolinson GN, Witting DA. Comparative activity of
amoxycillin and ampicillin in an experimental bacterial infec-

3 Comber KR, Osborne CD, Sutherland R. Comparative effects of
amoxycillin and ampicillin in the treatment of experimental
mouse infection. \textit{Antimicrob Agents Chemother} 1975;7:179–
85.

4 Barry AL, Thornsberry C. Susceptibility testing diffusion test
procedures. In: Lennette EN, Balows A, Hausler WJ, Truant
American Society for Microbiology, 1980:463–74.

5 Brown D, Blowers R. Disc methods of susceptibility testing
and other semiquantitative methods. In: Reeves DS, Phillips I,
Williams JD, Wise R, eds. \textit{Laboratory methods in antimicro-
brial chemotherapy}. Edinburgh: Churchill-Livingstone,
1978:8–30.

6 Brumfitt W, Hamilton-Miller JMT, Dixon S, Gargan RA,
Gooding A. Enterobacter resistant to amoxycillin/clavulanate.

7 Batchelor FR, Chain EB, Hardy TL, Mansford KRL, Rolinson
GN. 6-aminoopenicillanic acid III. Isolation and purification.

8 John JF, Sharbaugh RJ, Bannister ER. \textit{Enterobacter cloacae}:
bacteraemia, epidemiology and antibiotic resistance. \textit{Rev

9 Lipsky BA, Hook EW, Smith AA, Plorde JJ. \textit{Citrobacter} infec-
tions in humans: experience at the Seattle Veterans Adminis-
tration Medical Center and a review of the literature. \textit{Rev

10 Kosmidis J, Williams JD, Andrews J, Goodall JAD, Geddes A.
Amoxycillin—pharmacology, bacteriology and clinical studies.

11 Eichhoff TC, Steinhauer BW, Finland M. The Klebsiella-
Enterobacter-Serratia division. Biochemical and serologic
characteristics and susceptibility to antibiotics. \textit{Ann Intern Med}
1966;65:1163–79.

12 Toala P, Lee YH, Wilcox C, Finland M. Susceptibility of \textit{Enterob-
tacter cloacae} and \textit{Enterobacter aerogenes} to 19 antimicrobial

13 Hennessey TD, Richmond MH. The purification and some prop-
eties of a \(\beta \)-lactamase (cephalosporinase) synthesized by

14 Farrar WE, Krause JM. Relationship between \(\beta \)-lactamase activity
and resistance of \textit{Enterobacter} to cephalothin. \textit{Infect Immun}

15 Tsang JC, Sansing GA, Miller MA. Relationship of beta-
lactamase activity to antimicrobial susceptibility in \textit{Serratia

16 Sawai T, Mitsuhashi S, Yamagishi S. Drug resistance in enteric
bacteria. XIV. Comparison of \(\beta \)-lactamase in Gram-negative
rod bacteria resistant to \(\alpha \)-aminobenzylpenicillin. \textit{Ipn J Mic-

17 Minami S, Inoue M, Mitsuhashi S. Purification and properties of
a cephalosporinase from \textit{Enterobacter cloacae}. \textit{Antimicrob

18 Crump J, Cansdale S. Enterobacter resistance to amoxycillin/

19 Sanders CC, Sanders WE. Emergence of resistance to cefam-
dole: Possible role of cefoxitin-inducible beta-lactamases.

20 Then RL, Angehrn P. Trapping of nonhydrolyzable cephalospor-
rins by cephalosporinases in \textit{Enterobacter cloacae} and
\textit{Pseudomonas aeruginosa} as a possible resistance mechanism.

21 Sogaard P. Resistance types in \textit{Enterobacter cloacae}. \textit{Acta Pathol

Requests for reprints to: Professor W Brumfitt, Depart-
ment of Medical Microbiology, The Royal Free Hospital,
Pond Street, London NW3 2QG, England.

\textcopyright{} BMJ Publishing Group Ltd 1983.
Phenomenon of resistance to Augmentin associated with sensitivity to ampicillin: occurrence and explanation.

W Brumfitt, J M Hamilton-Miller, S Dixson, R A Gargan and A Gooding

doi: 10.1136/jcp.36.6.670

Updated information and services can be found at:
http://jcp.bmj.com/content/36/6/670

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/