reduced blood in less than 12 min.

We thank Miss Joan Henthorn in the Department of Haematology, Central Middlesex Hospital, for the automated cell counts and Mr TG Proger of Kimal Scientific Products Ltd for supplying the filters.

EJ JOHNSON
V MIJOVIC
B BROZOVIC
North London Blood Transfusion Centre, Edgware, Middlesex

Reference

Acute bacterial conjunctivitis and maltose negative meningococci

Acute bacterial conjunctivitis is usually caused by the pneumococcus or Haemophilus influenzae, but other organisms are sometimes involved and it is important to identify these exactly. Among the less common pathogens are the neisseria, and both Neisseria gonorrhoeae and N meningitidis have been implicated in ophthalmic infections.

N gonorrhoeae is particularly associated with severe destructive ophthalmia in the newborn but may also cause purulent conjunctivitis in adults in whom infections by N meningitidis also occur from time to time.

These two organisms are very similar, but for obvious epidemiological reasons it is important to distinguish between them. Coagglutination tests are available to identify N gonorrhoeae but not for N meningitidis. The differentiation of these two organisms therefore still relies mainly on classic methods of sugar fermentation. In these tests N gonorrhoeae produces acid from glucose only, while N meningitidis produces acid from glucose and maltose;1 in many laboratories this is still the only way of identifying them. Difficulty comes about because there are some strains of N meningitidis which do not ferment maltose promptly and are therefore likely to be wrongly identified.2

Case report

A 12 year old schoolboy attended the casualty department complaining of pain, redness, and stickiness of the right eye for two days. Apart from a recent sore throat he had been well. Examination confirmed purulent conjunctivitis of the right eye and a swab was taken for bacterial culture. He was treated with topical chloramphenicol ointment applied initially to the right eye and later to both eyes as the condition became bilateral the following day. The condition subsided over the next five days and the patient was well at follow up.

 Cultures produced a heavy pure growth of a capneic neisseria, which when tested for sugar reactions (Difco GC medium base) produced acid from glucose only and not from maltose, sucrose, or lactose. These are the characteristic reactions of N gonorrhoeae, but the isolate gave a negative result with the gonococcal coagglutination test (Phadebact). There was therefore some doubt as to the identity of the organism; it was further subcultured and the identification tests repeated. By the third subculture the organism produced acid from maltose, and serotyping confirmed it as a group C strain of N meningitidis which was fully sensitive to penicillin, chloramphenicol, and sulphamamide.

Discussion

N meningitidis is not a common cause of bacterial conjunctivitis. At the Manchester Royal Eye Hospital during the seven year period 1977–83, there have been five patients infected by this organism, compared with 536 pneumococcal and 451 H influenzae infections. The meningococcal infections were all in adult or adolescent patients, in contrast to the other bacterial infections for which the highest incidence was in preschool children. During the same period there have been six cases of neonatal gonococcal infection and one in an adult.

The interpretation of results from conventional tests for identifying pathogenic neisseria must be treated cautiously. There are a number of reports of maltose negative strains of N meningitidis causing meningitis3,4 but not previously from ophthalmic infection. A negative result in the gonococcal coagglutination test and repeated testing of sugar reactions on repeated subculture may be needed to establish the true identity of atypical strains of N meningitidis isolated from unusual sources.

RM STIRLAND
JA TOOTH
JA MEIGH
Department of Microbiology, Manchester Royal Infirmary, Manchester

Antigenic variation in Latin American human pararotaviruses (atypical rotaviruses)

Recently, virus particles morphologically indistinguishable from rotaviruses but which lack the typical group antigen have been described in man and animals. Such viruses have been variously termed pararotavirus1 or atypical rotavirus.2 The characterisation of a pararotavirus has recently been described from a child in Mexico,3 and a further isolate has been found in a child with diarrhoea in Chile (unpublished observations).

We have compared by electron microscopy the antigenic relation of both these human pararotaviruses using the protein A solid phase antibody capture technique. Paired serum samples were available from the child in Mexico City, which have been shown to be free from antibody to rotaviruses. These sera were used in the protein A antibody capture technique against both the Mexican and Chilean pararotaviruses. In addition, human immune globulin prepared in the United Kingdom was tested in a similar fashion. Briefly, carbon-formvar coated grids were floated on a solution of staphylococcal protein A before transferring to a solution of the appropriate antibody.4 The grids were then floated on a suspension of clarified faecal emulsion containing the antigen before staining with 1·5% phosphotungstic acid. The Table shows the results obtained after blind examination of the electron microscope grids.

References

Acute bacterial conjunctivitis and maltose negative meningococci.

R M Stirland, J A Tooth and J A Meigh

J Clin Pathol 1984 37: 1416
doi: 10.1136/jcp.37.12.1416-a

Updated information and services can be found at:
http://jcp.bmj.com/content/37/12/1416.1.citation

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/