Depressed antithrombin III biological activity in opiate addicts

ANTONIO CERIELLO, PATRIZIA DELLO RUSSO, FRANCESCO CURCIO, ANGELO TIRELLI, DARIO GIUGLIANO

From the Istituto di Patologia Speciale Medica, I Facoltà di Medicina — Università di Napoli, Naples, Italy.

SUMMARY Antithrombin III activity was significantly decreased in opiate addicts, but no difference was found between addict and control groups in antithrombin III plasma concentration. Moreover, glycosylated haemoglobin concentration was increased in opiate addicts, but no correlation between glycosylated haemoglobin and antithrombin III activity was found. These data show that in opiate addicts there is depressed biological activity of antithrombin III. Further characterisation of the molecular changes in antithrombin III in addicts is needed to establish whether the impaired activity is affected by altered glucose metabolism.

Decreased antithrombin III activity, correlated with altered glucose metabolism, has been reported in diabetes; this decreased activity occurs in the presence of normal concentrations of proteins. Impaired glucose tolerance in opiate addicts has been shown by low values of glucose utilisation and by increased concentrations of glycosylated haemoglobin and glycosylated proteins. We have therefore measured the concentration as well as the biological activity of antithrombin III in opiate addicts and have correlated the results with glycosylated haemoglobin values, which closely reflect glucose tolerance.

Material and methods

Nineteen male addicts, who were taking heroin by intravenous injection and were attending our unit regularly for treatment, were studied. All were volunteers, aged 18–27 years, with normal body weights (58–68 kg), and with no family history of diabetes. The total heroin intake in 24 h ranged between 20 and 200 mg.

Twenty healthy men, matched for age (18–28 years) and weight (56–69 kg), acted as controls.

Citrated venous blood was obtained from a forearm vein, without stasis, after 12 h fasting. Plasma glucose concentration was measured by the glucose oxidase method. Glycosylated haemoglobin was determined with the rapid chromatographic method of Welch and Boucher.

Antithrombin III activity was evaluated as heparin cofactor activity according to Abildgaard. The antithrombin III activity was expressed as a percentage of normal plasma activity.

Antithrombin III protein concentration was determined by radial immunodiffusion according to Mancini et al on the M-Partigen agarose plate (Behring Diagnostics).

Statistical comparisons were made by simple linear regression and Student’s t test for unpaired data.

Results

Glycosylated haemoglobin concentration was increased (p < 0.001) and antithrombin III activity decreased (p < 0.001) in addicts, while no difference was found in antithrombin III and glucose plasma concentrations (Table). Furthermore, as previously found there was a good correlation between antithrombin III activity and antithrombin III protein concentration in healthy controls (r = 0.93; p < 0.001) (Fig. 1), but not in addicts (r = 0.16; p = NS) (Fig. 2). No significant correlation was found between antithrombin III activity and glycosylated haemoglobin and plasma glucose concentrations or heroin dose in addicts.

Discussion

Antithrombin III is believed to be one of the major regulator proteins of the coagulation system. A functional defect has recently been described —
Depressed antithrombin III biological activity in opiate addicts

Concentrations of plasma glucose and glycosylated haemoglobin and antithrombin III concentration and activity in opiate addicts and controls

<table>
<thead>
<tr>
<th></th>
<th>Addicts (19)</th>
<th>Controls (20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma glucose concentration (mmol/l)</td>
<td>4.58 ± 0.74</td>
<td>4.64 ± 0.81</td>
</tr>
<tr>
<td>Glycosylated haemoglobin (%)</td>
<td>7.1 ± 0.15</td>
<td>6.2 ± 0.18</td>
</tr>
<tr>
<td>Antithrombin III activity (%)</td>
<td>87.62 ± 12.23</td>
<td>104.9 ± 8.94</td>
</tr>
<tr>
<td>Antithrombin III concentration (mg/100 ml)</td>
<td>30.72 ± 3.74</td>
<td>31.32 ± 2.35</td>
</tr>
</tbody>
</table>

Results are given as mean ± SD.

Fig. 1 Correlation between antithrombin III activity and antithrombin III protein concentration in healthy controls.

Fig. 2 Correlation between antithrombin III activity and antithrombin III protein concentration in opiate addicts.

Antithrombin III Budapest — which is associated with venous thromboembolism, and thromboembolic episodes in opiate addicts have been reported.

Our data suggest the existence of depressed antithrombin III biological activity in opiate addicts and may explain the findings of changes in the blood coagulation system in addicts. These changes are similar to those found in diabetics, who have increased platelet aggregation and increased fibrinogen values. Moreover, these data highlight other similarities between opiate addicts and diabetics.

To our knowledge this is the first demonstration that chronic heroin administration interferes adversely with protein biological function. Characterisation of the molecular alteration in antithrombin III in opiate addicts is needed to establish whether the impaired antithrombin III activity is affected, as in diabetics, by altered glucose metabolism.

References

1042

Ceriello, Russo, Curcio, Tirelli, Giugliano

Requests for reprints to: Dr Antonio Ceriello, Istituto di Patologia Speciale Medica, I Facoltà di Medicina, Piazza Miraglia — 80138 Naples, Italy.

The August 1984 issue

THE AUGUST 1984 ISSUE CONTAINS THE FOLLOWING PAPERS

Review article

Glycosylated haemoglobin: measurement and clinical use *I PEACOCK*

Proximal renal tubular function in myelomatosis: observations in the fourth Medical Research Council trial *EH COOPER, MA FORBES, RA CROCKSON, ICM MACLENNAN*

Plasma ionised calcium in preterm infants: comparison with adults *PD MAYNE, JA JAMES, IC BARNES, IZ KOVAR*

Early plasma protein and mineral changes after surgery: a two stage process *MA MYERS, A FLECK, B SAMPSON, CM COLLEY, J BENT, G HALL*

Maternal serum α1-antitrypsin concentrations in normotensive and hypertensive pregnancies *M LEGGE, GB DUFF, HC POTTER, MM HOETJES*

Haemorrhological effects of prostaglandin E1 infusion in Raynaud’s syndrome *GS LUCAS, MH SIMMS, NM CALDWELL, SJ Alexander, J STUART*

Platelet impedance aggregation in whole blood and its inhibition by antiplatelet drugs *JJ MACKIE, RJ JONES, SJ MACHIN*

Consumption of fibrinolytic proteins in menstrual fluid from women with normal menstrual blood loss *SA CEDERHOLM-WILLIAMS, MCP REES, AC TURNBULL*

Measurement of cross linked fibrin derivatives in plasma: an immunoassay using monoclonal antibodies *AN WHITAKER, MJ ELMS, PP MACHI, PG BUNDESEN, DB RYLLATT, AJ WEBBER, IH BUNCE*

Assessment of the value of a competitive protein binding radioassay of folic acid in the detection of folic acid deficiency *BJ BAIN, SN WICKRAMASINGHE, GN BROOME, RA LITWIX/CIUZ, J SIMS*

Distribution of laminin, fibronectin, and interstitial collagen type III in soft tissue tumours *AJ D’ARDENNE, P KIRKPATRICK, BC SYKES*

An investigation of β enolase as a histological marker of rhabdomyosarcoma *JANICE A ROYDS, S VARIEND, WR TIMPERLEY, CB TAYLOR*

Nature of non-B, non-T lymphomas: an immunohistological study on frozen tissues using monoclonal antibodies *G PALLESEN, PCL BEVERLEY, EB LANE, M MADSEN, DY MASON, H STEIN*

Morphological and immunohistological changes in the skin in allogeneic bone marrow recipients *JP SLOANE, JA THOMAS, SF IMRIE, DF EASTON, RL POWLES*

Amine and peptide hormone production by lung carcinoma: a clinicopathological and immunocytochemical study *FT BOSMAN, A BRUTEL DE LA RIVIERE, RWM GIARD, AAJ VERHOFSAD, G CRAMER-KNIJNENBURG*

Comparison of a commercial ELISA system with restriction endonuclease analysis for typing herpes simplex virus *KJ SMITH, CR ASHLEY, JM DARVILLE, J HARBOUR, APCH ROOME*

Clostridium perfringens type C causing necrotising enteritis *WJP SEVERIN, AA de la FUENTE, MF STRINGER*

Extragenital granuloma inguinale (Donovanosis) diagnosed in the United Kingdom: a clinical, histological, and electron microscopical study *DV SPAGNOLO, PR COBURN, JJ CREAM, BS AZADIAN*

Technical methods

Counterimmunoelectrophoresis in the diagnosis of whooping cough *PC BORELAND, SH GILLESPIE*

Sample collection for determination of plasma fibroneciton concentration *PEARL TCY TOY, MARION E REID*

Advantages of fixed stored materials for immunoelectron microscopy, with special reference to the study of malignant lymphomas *H AKATSUKA, K KITO, M SHAMOTO, T SUCHI*

Letters to the Editor

Book reviews

Copies are still available and may be obtained from the PUBLISHING MANAGER, BRITISH MEDICAL ASSOCIATION, TAVISTOCK SQUARE, LONDON WC1H 9JR, price £5.00, including postage
Depressed antithrombin III biological activity in opiate addicts.
A Ceriello, P Dello Russo, F Curcio, A Tirelli and D Giugliano

J Clin Pathol 1984 37: 1040-1042
doi: 10.1136/jcp.37.9.1040

Updated information and services can be found at:
http://jcp.bmj.com/content/37/9/1040

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/