Gas chromatographic identification of Clostridium difficile and detection of cytotoxin from a modified selective medium

PN LEVETT, KD PHILLIPS
From the PHLS Anaerobe Reference Unit, Public Health Laboratory, Luton and Dunstable Hospital, Luton

SUMMARY A modification of an existing selective medium for Clostridium difficile is described. Inclusion in the medium of DL nor-leucine and p-hydroxyphenylacetic acid enables identification of C difficile to be made directly from primary isolation plates by gas chromatographic detection of caproic acid and p-cresol. Plugs of agar withdrawn from the selective medium also allow the detection of cytotoxin production in vitro.

The isolation of Clostridium difficile from faeces has been greatly facilitated by the evolution of efficient selective media and procedures. These media are not absolutely selective, however, and thus all presumptive isolates of C difficile require definitive identification. The time taken to obtain pure cultures and perform biochemical tests may delay identification by as much as five days, which is clearly undesirable in the diagnostic laboratory. In addition, it may be necessary to determine the ability of an isolate to produce cytotoxin in vitro, since both cytotoxigenic and non-cytotoxigenic strains of C difficile may be present in faecal specimens. In this paper we describe the use of two simple tests carried out on primary isolation plates to confirm the presence of C difficile and its cytotoxigenic status.

Material and methods

BACTERIAL STRAINS
Fresh clinical isolates of the following species were studied: five C bifurcans, two C butyricum, 19 C difficile, two C glycolicum, two C innocuum, one C paraputrefaciens, five C sordellii, and 15 C scatologenes. C difficile NCTC 11209 and C scatologenes NCTC 9800 were also studied.

STOOLS
One hundred and ninety stool specimens were received from hospitals throughout the United Kingdom. All samples examined were from patients with diarrhoea which was thought to be due to C difficile and were processed immediately after receipt.

MEDIA
Modified cycloserine cefoxitin fructose agar (CCFA medium) was prepared containing the following: C difficile agar base (Oxoid CM601) 69 g/l; 50% fresh egg yolk emulsion 36 ml/l; freeze dried cycloserine and cefoxitin (Oxoid SR96), 250 mg/l and 8 mg/l, respectively; 2% (wt/vol) neutral red solution 1.4 ml/l; p-hydroxyphenylacetic acid (Sigma Chemical Co) 1 g/l; DL nor-leucine (BDH Ltd) 2 g/l. A similar medium was prepared without the addition of antibiotics. Five percent horse blood agar plates were obtained commercially (Tissue Culture Services, Slough, Berks).

CULTURE
All specimens were subjected to alcohol shock to select for spores, followed by plating on to modified CCFA medium and blood agar plates. All plates were incubated in an anaerobic cabinet at 37°C for 48 h. Enrichment cultures in cooked meat broth were performed as described previously.

IDENTIFICATION
All colony types with morphologies typical of C difficile were subcultured on to blood agar plates and identified using the criteria of Holdeman et al.

CYTOTOXIN ASSAY
Faecal cytotoxin was assayed as described previously. Production of cytotoxin in vitro was detected on CCFA plates; a plastic drinking straw was used.
Gas chromatographic identification of Clostridium difficile

to withdraw two plugs from an area of the plate adjacent to the growth of suspected C difficile. One plug was placed in a tube containing a monolayer of MRC 5 cells; the second plug was placed in another tube with the addition of five drops of C sordellii antitoxin (Wellcome Diagnostics Ltd). The tubes were incubated at 37°C and examined after 24 h and 48 h for a characteristic cytopathic effect neutralised by C sordellii antitoxin. A conventional broth technique for the in vitro production of cytotoxin was used in parallel with the plate method.9

GAS-LIQUID CHROMATOGRAPHY
A plug of agar was withdrawn from an area of each CCFA plate underlying growth of suspected C difficile.3 One drop of sterile distilled water was placed on the plug and left for 10 min at room temperature. Samples (1 μl) of the aqueous extract were assayed by gas-liquid chromatography for the presence of volatile fatty acids and p-cresol. A Pye Unicam Series 204 gas chromatograph was equipped with a flame ionisation detector, employing a 1.5 m × 4 mm internal diameter glass column packed with 10% FFAP on diatomite CLQ (JJ's Chromatography Ltd). The oven temperature was 200°C and the carrier gas was nitrogen at a flow rate of 50 ml/min. Attenuation of the instrument was routinely set at 2 × 10⁻⁸ (2 × 10⁻¹⁰ Amps/full scale deflection). The recorder chart speed was 0.5 cm/min.

Results
Pure cultures of C difficile on the modified CCFA medium without antibiotics produced iso-caproic and caproic acids and p-cresol (Figure). C bifermentans, C sordellii, and C sporogenes produced iso-caproic, caproic, γ-amino butyric, and δ-amino valeric acids. Iso-caproic acid, caproic acid, and p-cresol were not detected in uninoculated CCFA medium nor in cultures of C butyricum, C glycolicum, C innocuum, or C paraputrificum. C scatologenes NCTC 9800 produced iso-caproic acid and p-cresol but not caproic acid.

C difficile was isolated from 66/190 stools (35%). All plates were examined by gas-liquid chromato-

Gas chromatograms of a standard solution of iso-caproic acid (i-C), caproic acid (C) and p-cresol (p-C), and cultures of C difficile and C sporogenes. δa-V = δ-amino valeric acid; γa-B = γ-aminobutyric acid.
graphy, and 66 contained a characteristic pattern of peaks of iso-caproic acid, caproic acid, and p-cresol. No other inoculated plates contained all of these metabolites. All of the 66 specimens positive by gas-liquid chromatography yielded a growth of *C. difficile* ranging from four colonies to a pure, confluent growth; two further specimens produced a light growth of *C. sporogenes*, which was easily distinguishable from *C. difficile* by its lipase reaction and its characteristic gas-liquid chromatography pattern (Figure).

Faecal cytotoxin was found in 58 specimens, from 50 of which *C. difficile* was isolated. Three of the eight faecal specimens which were cytotoxin positive and culture negative were from one patient who was originally culture and cytotoxin positive. Additionally, 16 faecal specimens yielded *C. difficile* on culture but did not contain detectable cytotoxin.

Culture plates from all cytotoxin positive stools were tested for in vitro production of cytotoxin. All *C. difficile* positive cultures from these stools contained cytotoxin; no cytotoxin was detected in those cultures which did not yield *C. difficile*. Of the 16 *C. difficile* cultures isolated from cytotoxin negative stools, 13 produced cytotoxin in vitro and three did not, which suggests that excretion of non-cytotoxicogenic strains in adults may be rare. There was 100% correlation between the results of the agar plug cytotoxin assay and the conventional broth technique.

Discussion

Production of p-cresol by clostridia has been described previously, but conflicting observations were recorded. Eldsen et al. found that *C. difficile* and *C. scatologenes*, but not *C. bifermentans*, *C. sordelli*, or *C. sporogenes*, produced p-cresol from L-tyrosine, whereas Bone et al. reported p-cresol production by *C. butyricum*, *C. paraputrificum*, *C. septicum*, and *C. sporogenes*. None of the strains of *C. bifermentans*, *C. sordelli*, or *C. sporogenes* examined in this study produced p-cresol; however, all produced γ-amino butyric acid and δ-amino valeric acid, as described by Mead.

Nunez-Montiel et al. reported the production of caproic acid from nor-leucine by *C. difficile*. We have found that caproic acid is also produced by *C. bifermentans*, *C. sordelli*, and *C. sporogenes* in addition to *C. difficile* in media supplemented with nor-leucine. *C. difficile*, *C. bifermentans*, and *C. sordelli* are related antigenically, and these findings provide further evidence of their taxonomic proximity. Makin suggested that *C. difficile* could be identified by the detection of volatile fatty acids produced in primary culture plates, but since *C. bifermentans*, *C. sordelli*, *C. sporogenes*, and *C. difficile* produce closely similar volatile acid profiles this method is quite clearly unsatisfactory if used as the sole criterion for identification.

The use of plugs of agar for the detection of cytotoxin was described by Chang and Gorbach. These authors reported the detection of cytotoxin from cultures containing as few as two colonies of *C. difficile*. Our results confirm this observation; detection of iso-caproic and caproic acids and p-cresol was possible with a similar number of colonies. Plugs of agar have been used successfully to test for the production of p-cresol by *C. difficile* and more recently for the production of volatile fatty acids by *C. difficile*.

The incorporation of egg yolk in the modified CCFA medium described here permits the differentiation of *C. difficile* from other commonly occurring clostridia which have similar metabolic profiles. Reliance on the detection of volatile fatty acids in the series acetic to iso-caproic for the identification of *C. difficile* is unsatisfactory. With the exception of *C. difficile*, no lecinthinase or lipase negative clostridia have been found to produce iso-caproic acid, caproic acid, and p-cresol. The modified CCFA medium described above facilitates definitive identification of *C. difficile* within 24–48 h.

We thank Dr AT Willis for his advice and encouragement.

References

Gas chromatographic identification of Clostridium difficile

Requests for reprints to: PN Levett, PHLS Anaerobe Reference Unit, Public Health Laboratory, Luton and Dunstable Hospital, Lewsey Road, Luton LU4 0DZ, England.
Gas chromatographic identification of Clostridium difficile and detection of cytotoxin from a modified selective medium.

P N Levett and K D Phillips

J Clin Pathol 1985 38: 82-85
doi: 10.1136/jcp.38.1.82

Updated information and services can be found at:
http://jcp.bmj.com/content/38/1/82

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/