Immunomorphological characterisation of antinuclear antibodies in chronic liver disease

FABIO CASSANI, FRANCESCO BIANCO BIANCHI, MARCO LENZI, UMBERTO VOLTA, EMILIO PISI

From the Istituto di Patologia Medica I, Università di Bologna, Policlinico S Orsola, 40138 Bologna, Italy

SUMMARY Two immunofluorescence procedures to evaluate antinuclear antibodies were compared in a series of 221 patients with chronic liver disorders of various aetiologies. The use of HEp-2 cells allowed us to discriminate with more confidence between the homogeneous and speckled patterns, to show the presence of associated patterns in the same serum, and, above all, to identify two specificities, unrecognisable on tissue sections. The anticientromere antibody was found in 10% of cases of primary biliary cirrhosis and occasionally in other conditions; the antibody staining multiple nuclear dots was strictly confined to primary biliary cirrhosis (17%). With the exception of autoimmune chronic active hepatitis the prevalence of antinuclear antibodies increased in all groups, particularly in primary biliary cirrhosis. Homogeneous antinuclear antibody was associated by both immunofluorescence procedures with autoimmune chronic active hepatitis. The multiple nuclear dot antinuclear antibody turned out to be an additional marker of primary biliary cirrhosis, helpful for the positive diagnosis of primary biliary cirrhosis in a proportion of cases negative for antimitochondrial antibody. Absorption experiments showed that multiple nuclear dot and antimitochondrial antibody are antigenically distinct. Moreover, multiple nuclear dot antinuclear antibody was associated with the finding of a dry Schirmer’s test.

Antinuclear antibodies are found in the serum of patients with chronic liver disorders. The method routinely used to detect them is the indirect immunofluorescence procedure with frozen tissue sections as substrate, which also allows recognition of different patterns of positivity. The diagnostic relevance of the antinuclear antibodies detected by this method is confined to the identification of the autoimmune subgroup of chronic active hepatitis, where antinuclear antibodies, mainly giving a homogeneous staining pattern, are to be found at a high titre (1/20–1/80).

It is now known from rheumatological studies that a more detailed characterisation of antinuclear antibody patterns can be achieved and new patterns have been described by the use of immunofluorescence on a substrate of dividing cells such as the HEp-2 cell line, instead of tissue sections. Recently, immunofluorescence on HEp-2 cells was applied to serum samples from patients with chronic liver disorders: the most striking findings were in primary biliary cirrhosis, a prototype autoimmune disease. In addition to M2-antimitochondrial antibodies, two new antinuclear antibody specificities were identified in primary biliary cirrhosis: the anticientromere antibody, already known as a marker of the CREST variety of scleroderma, and antibody giving a pattern described as multiple nuclear dots or atypical discrete speckled staining.

We report a comparison of immunofluorescence on tissue sections and on HEp-2 cells in a large series of Italian patients with chronic liver disease of various aetiologies. The clinical and diagnostic implications of new antinuclear antibody specificities are discussed.

Material and methods

PATIENTS Two hundred and seventy one patients with chronic liver disease of various aetiologies (Table 1) were studied. The diagnoses were made by internationally accepted clinical, serological, and histological criteria. Of the patients with primary biliary cirrhosis, 71 (86%) were women; in 22 of them Schirmer’s test for tear secretion was carried out. Patients with chronic active hepatitis who were positive for liver kidney microsomal antibody were
negative for all serological markers of hepatitis B virus. Autoimmune chronic active hepatitis was defined by the detection of serum antinuclear antibody or smooth muscle antibody, or both at a titre equal to or higher than 1/40 in the absence of any other cause of the liver disease. Cryptogenic chronic active hepatitis cases had no serological markers of hepatitis B virus infection, no antinuclear antibodies or smooth muscle antibodies, and no history of alcohol abuse. Patients with alcoholic liver disease had alcohol intakes of more than 150 ml/day and were negative for hepatitis B virus markers. Of the 25 patients with hepatitis B surface antigen (HBsAg) positive chronic active hepatitis, 14 were positive for the hepatitis B e antigen and 11 for the corresponding antibody. Among patients with liver kidney microsomal antibody, autoimmune, cryop- togenic, and HBsAg positive chronic active hepatitis the numbers and percentages of women were as follows: 12 (60%), 25 (81%), 13 (68%), and 7 (28%), respectively. Twenty three (53%) of the patients with alcoholic liver disease were women.

INDIRECT IMMUNOFLUORESCENCE

Immunofluorescence studies using cryostat sections of rat liver, kidney, and stomach and commercially available HEP-2 cells preparations (Kallestad) were performed according to standard procedures. Serum samples were stored at –20°C until used and tested at a 1/40 dilution. A fluorescein isothiocyanate conjugated sheep antihuman F(ab)2 (Wellcome) was used as second antibody. Slides were read blindly by two independent observers under a Leitz Orthoplan microscope with vertical illumination. Staining patterns were defined according to Bernstein et al.°

ABSORPTION EXPERIMENTS

Eight serum samples from patients with primary biliary cirrhosis, three positive for anticientromere antibody and five for multiple nuclear dot antibodies, were absorbed at 1/40 dilution with a rat liver mitochondrial fraction at a protein concentration° of 5 mg/ml. This fraction was prepared and sonicated according to Sayers et al.†

Table 1. Results of antinuclear antibody characterisation by immunofluorescence on tissue sections and HEP-2 cells in chronic liver disease (serum dilution = 1/40).

<table>
<thead>
<tr>
<th>Immunofluorescence on tissue sections</th>
<th>Primary biliary cirrhosis (83)</th>
<th>Chronic active hepatitis</th>
<th>Autoimmune (31)</th>
<th>Cryptogenic (19)</th>
<th>HBsAg positive (25)</th>
<th>Alcohol liver disease (43)</th>
<th>Controls (50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antinuclear antibody positive (all patterns)</td>
<td>21 (25%)</td>
<td>4 (20%)</td>
<td>25 (81%)</td>
<td>—</td>
<td>3 (12%)</td>
<td>12 (28%)</td>
<td>4 (8%)</td>
</tr>
<tr>
<td>Speckled</td>
<td>20 (24%)</td>
<td>3 (15%)</td>
<td>18 (58%)</td>
<td>—</td>
<td>3 (12%)</td>
<td>9 (21%)</td>
<td>3 (6%)</td>
</tr>
<tr>
<td>Homogeneous</td>
<td>—</td>
<td>1 (5%)</td>
<td>6 (19%)</td>
<td>—</td>
<td>—</td>
<td>1 (2%)</td>
<td>—</td>
</tr>
<tr>
<td>Nucleolar</td>
<td>—</td>
<td>1 (5%)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Peripheral*</td>
<td>1 (1%)</td>
<td>—</td>
<td>1 (3%)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1 (2%)†</td>
</tr>
<tr>
<td>Antimitochondrial antibody positive</td>
<td>69 (83%)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Immunofluorescence on HEP-2 cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antinuclear antibody positive (all patterns)</td>
<td>48 (58%)</td>
<td>5 (25%)</td>
<td>25 (81%)</td>
<td>5 (26%)</td>
<td>8 (32%)</td>
<td>20 (47%)</td>
<td>6 (12%)</td>
</tr>
<tr>
<td>Speckled</td>
<td>28 (34%)‡</td>
<td>1 (5%)</td>
<td>15 (48%)**</td>
<td>3 (16%)††</td>
<td>6 (24%)§§</td>
<td>16 (37%)##</td>
<td>5 (10%)###</td>
</tr>
<tr>
<td>Homogeneous</td>
<td>2 (2%)‡‡</td>
<td>1 (5%)¶</td>
<td>8 (26%)</td>
<td>—</td>
<td>1 (4%)</td>
<td>1 (2%)</td>
<td>—</td>
</tr>
<tr>
<td>Nucleolar</td>
<td>10 (12%)</td>
<td>3 (15%)</td>
<td>4 (13%)</td>
<td>3 (16%)</td>
<td>4 (16%)</td>
<td>4 (9%)</td>
<td>3 (6%)</td>
</tr>
<tr>
<td>Anticentromere antibody</td>
<td>8 (10%)¶¶</td>
<td>1 (5%)</td>
<td>1 (3%)</td>
<td>—</td>
<td>—</td>
<td>1 (2%)</td>
<td>—</td>
</tr>
<tr>
<td>Multiple nuclear dot</td>
<td>14 (17%)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*Never detected on HEP-2 cells.
†Associated with nucleolar staining.
‡Associated with nucleolar in seven and with multiple nuclear dots in five samples.
§Associated with multiple nuclear dots in one sample.
¶Associated with nucleolar staining in one sample.
‡‡Associated with anticientromere antibody.
**Associated with nucleolar staining in three samples.
††Associated with nucleolar staining in one sample.
##Associated with nucleolar staining in two samples.
###Associated with nucleolar staining in three samples.
####Associated with nucleolar staining in two samples.
Immunomorphological characterisation of antinuclear antibodies in chronic liver disease

803

Tests were carried out at 4°C overnight.

Statistics

Statistical analysis was performed using Fisher’s exact test and the χ² test with Yates’ correction.

Results

The results of the immunofluorescence studies are shown in Table 1. On tissue sections antimitochondrial antibody was found only in serum samples from patients with primary biliary cirrhosis (83%). Antinuclear antibody was found in 81% of autoimmune chronic active hepatitis samples, but much less often (12%–28%) in the other conditions. Among the antinuclear antibody patterns, speckled staining was the commonest in all groups; homogeneous staining, though not common, was associated with autoimmune chronic active hepatitis (p < 0.001, χ² test). In some cases it was difficult to distinguish between the speckled and homogeneous patterns.

With the HEp-2 cells as substrate for immunofluorescence, the frequency of antinuclear antibody positive serum samples increased in all groups except autoimmune chronic active hepatitis. In particular, 58% of primary biliary cirrhosis samples were antinuclear antibody positive, chiefly because of the recognition of two antinuclear antibody patterns not detected on tissue sections: anticentromere antibody and multiple nuclear dot antinuclear antibody. Anticentromere antibody was found in eight primary biliary cirrhosis samples (10%), of which seven were antimitochondrial antibody positive, and in one case each of alcoholic liver disease, and autoimmune and liver kidney microsomal antibody positive chronic active hepatitis. Multiple nuclear dot staining was confined to primary biliary cirrhosis, where it occurred in 14 cases (17%), of which two were antimitochondrial antibody negative. Among the other antinuclear antibody patterns the homogeneous pattern was again associated with autoimmune chronic active hepatitis (p < 0.001, χ² test).

A comparison of immunofluorescence patterns on frozen tissue sections and HEp-2 cells in primary biliary cirrhosis and autoimmune chronic active hepatitis cases is given in Table 2. These two conditions were selected because of the high prevalence of antinuclear antibody, displaying the whole range of relevant patterns. From its analysis it appears that 15 of the 23 anticentromere antibody and multiple nuclear dot positive samples were negative, and the remaining eight were scored as speckled on tissue sections. Of the 10 samples giving a homogeneous pattern on HEp-2 cells, five showed a speckled and three a homogeneous staining and two were negative on tissue sections. Moreover, three of the six homogeneous antinuclear antibody positive samples on tissue sections turned out to give a speckled pattern on HEp-2 cells.

The titre of anticentromere antibody and multiple nuclear dot staining was unaffected by preabsorption of the serum with sonicated mitochondrial fraction, whereas the cytoplasmic staining seen with most primary biliary cirrhosis sera samples was always affected.

Tear secretion was reduced in eight of the 22 primary biliary cirrhosis patients tested (36%). Multiple nuclear dot antinuclear antibody occurred in four (50%) of these eight patients, but in only one (7%) of the 14 patients without sicca syndrome (p < 0.01, Fischer’s exact test).

Discussion

Immunological tests have an established place in the classification and differential diagnosis of chronic liver disease. Besides M₁-antimitochondrial antibody, found in primary biliary cirrhosis, and liver kidney microsomal antibody, which identifies a sub-

Table 2 Comparison of antinuclear antibody patterns detected by immunofluorescence on tissue sections and HEp-2 cells in primary biliary cirrhosis and autoimmune chronic active hepatitis serum samples (diluted 1/40).

<table>
<thead>
<tr>
<th>Immunofluorescence on tissue sections</th>
<th>Speckled (38)</th>
<th>Homogeneous (6)</th>
<th>Peripheral (2)</th>
<th>Antinuclear antibody negative (38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunofluorescence on HEp-2 cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speckled</td>
<td>24</td>
<td>3</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Homogeneous</td>
<td>5</td>
<td>3</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Nucleolar</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6</td>
</tr>
<tr>
<td>Anticentromere antibody</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6</td>
</tr>
<tr>
<td>Multiple nuclear dot</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>9</td>
</tr>
<tr>
<td>Antinuclear antibody negative</td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>38</td>
</tr>
</tbody>
</table>

For associations of patterns see footnotes to Table 1.
set of chronic active hepatitis, smooth muscle antibody and antinuclear antibody are generally regarded as markers of the autoimmune form of chronic active hepatitis. This study, and two previous ones, show that by using HEp-2 cells as immunofluorescence substrate antinuclear antibody can be detected much more frequently in chronic liver disorders. In primary biliary cirrhosis this is largely due to the detection of two new specificities: anticytome antibody and multiple nuclear dot antinuclear antibody. Additional advantages of HEp-2 cells are that the homogeneous pattern may be differentiated with more much confidence from the speckled one on the basis of mitotic cells chromatin positivity and that different patterns, occurring simultaneously in the same serum, are individually recognised. Such considerations may not apply to all cell lines at present used as immunofluorescence substrate. In a recent report on antinuclear antibody characterisation in liver disease by immunofluorescence, using human embryonic fibroblasts as a substrate, no anticytome antibody was found, and a peripheral nuclear staining, similar to that found on tissue sections but never detected to our knowledge on HEp-2 cells, was reported. Although the small number of primary biliary cirrhosis serum samples tested could partially explain such discrepancies, a different expression of antigenic nuclear components in different substrates cannot be ruled out.

Using immunofluorescence on both tissue sections and HEp-2 cells, the homogeneous pattern was associated with autoimmune chronic active hepatitis. No correlation, however, was found between homogeneous antinuclear antibody positive cases detected on tissue sections and HEp-2 cells. This further suggests that antinuclear antibody patterns detected on tissue sections must be confirmed on HEp-2 cells. The low prevalence of antinuclear antibody in liver kidney microsomal antibody positive chronic active hepatitis was confirmed on tissue sections and was only slightly increased by testing on HEp-2 cells, where a centromere positive case was detected. The overall increased sensitivity of antinuclear antibody testing recorded in our series (from 29% on tissue sections to 50% on HEp-2 cells) was associated with a negligible decrease of specificity (antinuclear antibody prevalence in controls from 8% on tissue sections to 12% on HEp-2 cells).

It has already been shown that anticytome antibody identifies primary biliary cirrhosis cases with elements of the CREST syndrome. We found anticytome antibody in 10% of primary biliary cirrhosis serum samples and occasionally in other chronic liver disorders, but the features of scleroderma were not reviewed in our study. As in Bernstein's study multiple nuclear dot antinuclear antibody on HEp-2 cells seems to be highly specific for primary biliary cirrhosis and can be considered a serological marker of this disease, albeit a much less sensitive one than antimitochondrial antibody. The multiple nuclear dot pattern was given by two of the 14 antimitochondrial antibody negative primary biliary cirrhosis serum samples included in this study. Since primary biliary cirrhosis can be difficult to diagnose in the absence of antimitochondrial antibody, the finding of multiple nuclear dot antinuclear antibody may be helpful in such cases. It remains to be seen whether patients with multiple nuclear dot antinuclear antibody become antimitochondrial antibody positive later. Our absorption studies show that multiple nuclear dot antinuclear antibody and antimitochondrial antibody are antigenically distinct. In terms of clinical relevance this study confirms that multiple nuclear dot antinuclear antibody is associated with the sicca syndrome in primary biliary cirrhosis.

We thank Dr Robert M Bernstein (Rheumatology Unit, Hammersmith Hospital, London) for the helpful suggestions in revising the manuscript. This study was supported in part by CNR grant no 83.02112.

References

5 Epstein O, Thomas HC, Sherlock S. Primary biliary cirrhosis is a dry gland syndrome with features of chronic graft-versus-host disease. Lancet 1980;i:1166-8.
11 Sayers TJ, Binder T, Berg PA. Heterogeneity of antimitochondrial antibodies. Characterization and separation of the antigen associated with the pseudo-lupus erythematosus
Immunomorphological characterisation of antinuclear antibodies in chronic liver disease

805

Requests for reprints to: Professor FB Bianchi, Istituto di Patologia Medica I, Policlinico S. Orsola, Via Massarenti, 9, 40138 Bologna, Italy.

The June 1985 issue

THE JUNE 1985 ISSUE CONTAINS THE FOLLOWING PAPERS

Light chains in Mediterranean lymphoma PG ISAACSON, SK PRICE

Immunocytochemical staining of T and B lymphocytes in serous effusions AK GHOSH, AI SPRIGGS, DY MASON

Intestinal metaplasia in endoscopic biopsy specimens of gastric mucosa GA ROTHERY, DW DAY

Morphological range of hyperplastic polyps and carcinomas arising in hyperplastic polyps of the stomach THATORI

Quantitation in inflammatory bowel disease using computerised interactive image analysis EM THOMPSON, AB PRICE, DG ALTMAN, C SOWTER, G SLAVIN

Gastricsin in the benign and malignant prostate WA REID, CN LIDDLE, J SVASTI, J KAY

Endometrial lymphoid tissue: an immunohistological study H MORRIS, J EDWARDS, A TILTMAN, M EMMS

Hepatic copper distribution in primary biliary cirrhosis shown by the scanning proton microprobe DJT VAUX, F WATT, GW GRIME, J TAKACS

Vascular occlusion and infarction in sickle cell crisis and the sickle chest syndrome NA ATHANASOU, C HATTON, JO'D McGEE, DJ WEATHERALL

Investigation of a kindred with a new autosomal dominantly inherited variant type von Willebrand's disease (possible type IID) FGH HILL, MS ENAYAT, AJ GEORGE

Modified immunocytochemical slide technique for demonstrating surface antigens on viable cells N FRICKHOFEN, KJ BROSS, W HEIT, H HEIMPEL

Non-suppression of cortisol secretion by long term treatment with ketoconazole in patients with acute leukaemia P DANDONA, J MOHUDDIN, HG PRENTICE

Detection of specific IgG and IgM antibodies to Toxoplasma gondii with a commercially available enzyme immunoassay kit system AH BALFOUR, JP HAFORD

Evaluation of gas-liquid chromatography for the rapid diagnosis of Clostridium difficile associated disease PAOLA GIANFRILLI, ANNALISA PANTOSTI, IDA LUZZI

Detection of rotavirus by a latex agglutination test, Rotalex: comparison with electron microscopy, immunofluorescence, polyacrylamide gel electrophoresis, and enzyme linked immunosorbent assay RB MOOSAI, R ALCOCK, TM BELL, FR LAIDLER, JSM PEIRIS, AP WYN-JONES, CR MADELEY

Use of immunoblotting to identify antigenic differences between the yeast and mycelial phases of Candida albicans JP BURNIE, RUTH C MATTHEWS, A FOX, SOAD TABAQCHALI

Acute placentitis and spontaneous abortion caused by Chlamydia psittaci of sheep origin: a histological and ultrastructural study SY WONG, ES GRAY, D BUXTON, J FINLAYSON, FWA JOHNSON

Technical method

Direct immunoperoxidase method for demonstrating Chlamydia psittaci in tissue sections J FINLAYSON, D BUXTON, IE ANDERSON, KM DONALD

Letters to the Editor

Book reviews

Notices

Some new titles

Copies are still available and may be obtained from the PUBLISHING MANAGER, BRITISH MEDICAL ASSOCIATION, TAVISTOCK SQUARE, LONDON WC1 9JR, price £5-00, including postage.
Immumomorphological characterisation of antinuclear antibodies in chronic liver disease.
F Cassani, F B Bianchi, M Lenzi, U Volta and E Pisi

J Clin Pathol 1985 38: 801-805
doi: 10.1136/jcp.38.7.801

Updated information and services can be found at:
http://jcp.bmj.com/content/38/7/801

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/