Effect of temperature on antimicrobial susceptibilities of *Pseudomonas maltophilia*

PF WHEAT, TG WINSTANLEY, RC SPENCER

From the Department of Bacteriology, Royal Hallamshire Hospital, Sheffield

SUMMARY After a case of peritonitis caused by *Pseudomonas maltophilia* had occurred 20 strains of the organism were investigated and the minimum inhibitory concentrations of a variety of antibiotics determined at 30°C and 37°C. There was a significant difference in susceptibility between 30°C (most resistant) and 37°C (most susceptible) for aminoglycosides and polymyxin B. No difference was seen with the other agents or in strains of *Ps aeruginosa* and *Enterobacteriaceae* tested under similar conditions. The possible mechanisms of this phenomenon are discussed below.

Since the first description by Hugh and Ryschkow in 1961 *Pseudomonas maltophilia* has become recognised as the second most common pseudomonad implicated in clinical disease, causing severe infections such as meningitis and septicaemia. Variation in the antimicrobial susceptibility of different strains of *Ps maltophilia* has been reported. On examining some of the methods used, however, it was found that different incubation temperatures had been used—30°C, 35°C, and 37°C—and this could account for the variation. A recent case of infection with *Ps maltophilia* prompted further investigations in which minimum inhibitory concentrations of a variety of antibiotics were determined on 20 strains of this species at 30°C and 37°C.

CASE REPORT

A 71 year old man presented with a five week history of increasing tiredness, nausea and vomiting, and decreased urine output. On admission his blood urea concentration was 70 m mol/l (421 mg/100 ml), serum creatinine concentration 1889 μmol/l (21 mg/100 ml) and urine output 20 ml/day. Continuous ambulatory peritoneal dialysis was started after a Tenckhoff catheter had been inserted under sterile conditions. Subsequent renal biopsy showed myeloma kidney secondary to a γ light chain paraprotein. Thirty one days after starting continuous ambulatory peritoneal dialysis he developed peritonitis, and culture of the peritoneal fluid by our standard method yielded a heavy growth of a Gram negative bacillus identified as *Ps maltophilia* (API-2ONE gallery, API Code 2005). As the original isolate was cultured in larger numbers at 30°C than at 37°C, antibiotic disc susceptibility was determined by the Stoke’s method on diagnostic sensitivity test agar (DST Oxoid) at 30°C and 37°C. The strain was resistant to gentamicin at 30°C but susceptible at 37°C and was susceptible to cefotaxime at both temperatures (Fig. 1).

Treatment was originally started with intraperitoneal gentamicin, 20 mg/2 l dialysate bag, and subsequently supplemented with cefotaxime, 250 mg/2 l bag, with four changes daily. Despite intensive antibiotic treatment the peritonitis became chronic. Two months after continuous ambulatory peritoneal dialysis was started haemodialysis was started, and he subsequently remained well.

Material and methods

ORGANISMS

In addition to the index strain, 19 other isolates of *Ps maltophilia* were investigated: four from our own laboratory (two blood, two continuous ambulatory peritoneal dialysis isolates); five from the National Collection of Type Cultures (NCTC 10257, 10599, 10258, 10498, and 10259); and 10 clinical strains sent to us by Dr B Holmes, National Collection of Type Cultures, Central Public Health Laboratory, London. All strains were confirmed as *Ps maltophilia* by API—2ONE galleries. Eight clinical strains of *Ps aeruginosa* and 11 *Enterobacteriaceae* (six *Escherichia coli*, one *Citrobacter freundii*, two *Serratia marcesens*, and two *Klebsiella pneumoniae*),

Accepted for publication 2 May 1985

identified by standard laboratory methods were also examined for comparison.15

\begin{flushright}
\textit{Effect of temperature on sensitivity of index strain of Ps maltophilia to gentamicin and cefotaxime}
\end{flushright}

\textbf{MINIMUM INHIBITORY CONCENTRATIONS}

Plate minimum inhibitory concentrations were determined on diagnostic sensitivity test agar medium (Oxoid). The antibiotics tested were aminoglycosides; gentamicin, tobramycin, and amikacin; other antibiotics with action on ribosomes; nalidixic acid and chloramphenicol; cell wall antibiotics; piperacillin and ceftazidime; and an antibiotic with cytoplasmic membrane action, polymyxin B sulphate. From a purity plate two colonies were touched with a sterile loop into 2 ml tryptone water (Oxoid) and used as the inoculum (roughly 105 colony forming units/ml) using a multipoint inoculator (Denley Ltd). The minimum inhibitory concentration for each antibiotic was defined as the lowest concentration of antibiotic that completely inhibited growth after incubation overnight at 30°C or 37°C.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\textbf{Antibiotic} & \textbf{Temperature of incubation (°C)} & \textbf{Ps maltophilia (n = 20)} & \textbf{Ps aeruginosa (n = 8)} & \textbf{Enterobacteriaceae (n = 11)} \\
& & \textbf{Range} & \textbf{MIC\textsubscript{50}} & \textbf{MIC\textsubscript{90}} & \textbf{Range} & \textbf{MIC\textsubscript{50}} & \textbf{MIC\textsubscript{90}} & \textbf{Range} & \textbf{MIC\textsubscript{50}} & \textbf{MIC\textsubscript{90}} \\
\hline
Gentamicin & 30 & 8->128 & 128 & >128 & 0->125 & 0.25 & 0.25 & 0->25 & 0.5 & 2 \\
& 37 & 0.25->128 & 4 & 64 & 0.125->0.25 & 0.125 & 0.25 & 0->25 & 0.5 & 2 \\
Tobramycin & 30 & 4->128 & 128 & >128 & 0.125->0.25 & 0.125 & 0.25 & 0->5 & 1 & 8 \\
& 37 & 0.25->128 & 2 & 64 & 0.125->0.25 & 0.125 & 0.25 & 0->5 & 1 & 8 \\
Amikacin & 30 & 8->128 & 128 & >128 & 0.125->0.25 & 0.125 & 0.25 & 0->5 & 1 & 8 \\
& 37 & 0.25->128 & 2 & 64 & 0.125->0.25 & 0.125 & 0.25 & 0->5 & 1 & 8 \\
Polymyxin B & 30 & 8->128 & 128 & >128 & 0.125->0.25 & 0.25 & 0.25 & 0->125 & 0.5 & 2 \\
& 37 & 4->128 & 32 & 64 & 0.125->0.25 & 0.25 & 0.25 & 0->125 & 0.5 & 2 \\
Chloramphenicol & 30 & 8->64 & 16 & 32 & 64->128 & 64 & >128 & 8->128 & 8 & 16 \\
& 37 & 8->64 & 16 & 32 & 64->128 & 64 & >128 & 8->128 & 8 & 16 \\
Nalidixic acid & 30 & 0.5->128 & 16 & >128 & 32->128 & 64 & >128 & 2->128 & 2 & >28 \\
& 37 & 0.5->128 & 16 & >128 & 32->128 & 64 & >128 & 2->128 & 2 & >28 \\
Piperacillin & 30 & 8->128 & 16 & >128 & 4->8 & 4 & 8 & 1->128 & 4 & >128 \\
& 37 & 8->128 & 16 & >128 & 4->8 & 4 & 8 & 1->128 & 4 & >128 \\
Ceftazidime & 30 & 0.5->128 & 2 & >128 & 0.5->2 & 1 & 2 & 0.06->0.125 & 0.06 & 0.125 \\
& 37 & 0.5->128 & 2 & >128 & 0.5->2 & 1 & 2 & 0.06->0.125 & 0.06 & 0.125 \\
\hline
\end{tabular}
\caption{Comparison of minimum inhibitory concentration (MIC) (range, minimum inhibitory concentration\textsubscript{50} and minimum inhibitory concentration\textsubscript{90}) (mg/l) at 30°C and 37°C}
\end{table}

\textbf{Results}

The table shows the results obtained. The aminoglycoside antibiotics and polymyxin B showed a significant difference in minimum inhibitory concentration range and minimum inhibitory concentration\textsubscript{50} values between the two temperatures of incubation. For Ps aeruginosa and Enterobacteriaceae no such difference was shown. None of the other antibiotics tested showed a difference in values after incubation at 30°C or 37°C for both Ps maltophilia and other strains of bacteria. Growth was the same at both temperatures, as shown by purity plates.

\textbf{Discussion}

Ps maltophilia is now recognised as an important cause of nosocomial infection.2,5,16 Variation in the susceptibility to antibiotics of different strains of Ps maltophilia is common.5 In this report we have shown a considerable difference in the susceptibility
Effect of temperature on antimicrobial susceptibilities of Pseudomonas maltophilia to the aminoglycoside antibiotics and, to a lesser degree, polymyxin B at the incubation temperatures of 30°C and 37°C. With strains of Ps aeruginosa and Enterobacteriaceae no such difference could be shown. All other antibiotics tested gave similar minimum inhibitory concentrations at both temperatures.

It is unlikely that the difference in susceptibility to gentamicin played an important part in the development of chronic peritonitis in our patient. The dialysis fluid is warmed before administration and is run in over five to 10 minutes, so the temperature of the dialysate would have rapidly reached that of the body. In patients receiving continuous ambulatory peritoneal dialysis peritonitis caused by Pseudomonas spp is hard to eradicate. In a recent report by Krothapali et al 10 cases of Pseudomonas peritonitis failed to respond to up to 4 weeks of adequate aminoglycoside treatment, and in all cases removal of the Tenckhoff catheter was required.17

The question remains as to why these temperature effects occurred, especially with the aminoglycosides. Several explanations are possible: Annear and Macculloch suggested that there may be an association between resistance to gentamicin and delayed growth of a strain of Ps aeruginosa at 22°C.18 Seal and Strangways believed that neither the acquisition of a resistance factor nor a single mutation leading to resistance to gentamicin affected growth at extremes of temperature.19 Recent studies have examined the susceptibility of Ps aeruginosa and E coli to aminoglycosides and shown an association between resistance and decreased permeability of the bacteria to the aminoglycosides.20 This type of mechanism as the source of resistance rather than a change in ribosomal property is supported by our observation that those antibiotics that also have ribosomal activity—that is, chloramphenicol and nalidixic acid—showed no change in their in vitro activity.

In view of the fact that cell wall lipids, especially phospholipids, probably help exclude certain lethal agents, it seems likely that variations in the temperature at which growth occurs has some effect. In general, organisms grown at a lower temperature in the growth range contain an increased proportion of unsaturated fatty acid residues in their lipids,21 and the composition of the phospholipid has also been shown to vary.22 Dunnick and O'Leary examined the composition of lipids from a variety of Enterobacteriaceae susceptible to and resistant to antibiotics and showed that there was a higher concentration of unsaturated acids and a lower concentration of cyclopropanic acids in lipids from resistant strains.23 Almost nothing, however, is known of the biochemical basis of this effect of temperature on the fatty acid composition of bacteria.21 K Shannon (personal communication) could detect no acetyl transferase or adenyl transferase activity in the original isolate of Ps maltophilia at 30°C. He commented that this resistance to a broad spectrum of aminoglycoside is seldom associated with enzymes that modify aminoglycoside. He had also not noticed this effect of temperature on susceptibility to aminoglycoside before.

Why this temperature effect seems to be so pronounced in Ps maltophilia with regard to susceptibility to aminoglycosides remains to be explained. In view of the increasing importance of the organism as a hospital pathogen it is imperative that susceptibility to tests for antibiotics be standardised, using uniform laboratory conditions with special regard to temperature.

We thank Dr CB Brown, consultant renal physician, for permission to publish details concerning his patients, Dr B Holmes for supplying additional strains of Ps maltophilia, and Dr K Shannon, St Thomas's Hospital, for his help.

References

13. Fenton PA. Laboratory diagnosis of peritonitis in patients...

18 Annear DI, Macculloch D. Cold-sensitive strains of Pseudomonas aeruginosa from urinary tract infection. Lancet 1974;ii:1382.

Requests for reprints to: Dr RC Spencer, Consultant Microbiologist, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England.
Effect of temperature on antimicrobial susceptibilities of Pseudomonas maltophilia.
P F Wheat, T G Winstanley and R C Spencer

J Clin Pathol 1985 38: 1055-1058
doi: 10.1136/jcp.38.9.1055

Updated information and services can be found at:
http://jcp.bmj.com/content/38/9/1055

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/