Immunophenotype analysis of malignant histiocytosis of the intestine

DM SALTER, AS KRAJEWSKI, AE DEWAR

From the Department of Pathology, Edinburgh University Medical School, Edinburgh

SUMMARY. Five cases of malignant histiocytosis of the intestine and one case of true histiocytic lymphoma were studied using immunohistological techniques. In paraffin sections tumour cells in all cases were shown to contain z-1-antitrypsin and to express the leucocyte common antigen. Four of the five cases of malignant histiocytosis of the intestine and the case of histiocytic lymphoma expressed the epithelial membrane antigen. Cryostat sections in four cases of malignant histiocytosis of the intestine showed that most tumour cells reacted with anti-T cell monoclonal antibodies. Only a minority expressed a typical monocyte macrophage phenotype.

Malignant histiocytosis of the intestine has only recently been recognised1–3 and is being increasingly diagnosed with the aid of immunohistochemical techniques, especially in association with coeliac disease.4 As fresh tissue for immunological studies is rarely available diagnosis of this disease has relied on the recognition of variable morphological patterns and the confirmation of the presence of z-1-anti-trypsin (z1AT), a marker of histiocytic tumour cells in paraffin sections.5 The histogenesis of malignant histiocytosis of the intestine has been sparsely documented. A study of the immunological, immunohistochemical, and cytochemical properties of the cells of malignant histiocytosis of the intestine3 included only three cases, with a limited frozen section immunohistochemical analysis on only one case. A recent study of histiocytic lymphoma showed phenotypic heterogeneity within true histiocytic malignancies, with results in some cases, suggesting differentiation of the malignant histiocytoses towards specialised subsets.6 This last study did not include cases of malignant histiocytosis of the intestine. The pronounced morphological heterogeneity within the neoplastic cells of cases of malignant histiocytosis of the intestine suggests that a similar immunophenotypic variation may be present. In our study we used immunoperoxidase techniques, and a large number of antisera (both monoclonal and polyclonal) were tested on cryostat and formalin fixed paraffin embedded sections from cases of malignant histiocytosis of the intestine. The results were compared with those of a case of true histiocytic lymphoma.

Material and methods

Six patients were studied, five diagnosed cases of malignant histiocytosis of the intestine and one case of histiocytic lymphoma: all were positive for z1AT.

CASE HISTORIES

Case 1 A 71 year old woman presented as an acute abdominal emergency following a three month history of diarrhoea, vomiting, weight loss, and general malaise. She had no noteworthy medical history. At operation, extensive tumours were seen throughout the jejunum and ileum. Histology showed the presence of multiple, often superficially ulcerated tumours composed of large malignant histiocytes with irregular nuclei, prominent nucleoli, and abundant eosinophilic cytoplasm admixed with scattered lymphocytes. The non-ulcerated lengths of small intestine showed partial to subtotal villous atrophy. Malignant histiocytosis of the intestine was diagnosed. She died within three months: necropsy was not performed.

Case 2 A 62 year old man presented with a six month history of weight loss, anorexia, diarrhoea, and pain of the lower back. Laparotomy showed thickening of the terminal half of the ileum and enlarged mesenteric lymph nodes. Histology showed multiple nodules of tumour within the ileum and local lymph nodes composed of malignant histiocytes with irregular nuclei, prominent nucleoli, and abundant eosinophilic cytoplasm. Multinucleate forms were present. The ileum unaffected by tumour nodules showed villous atrophy. Malignant histiocytosis of the intestine was diagnosed. He died one day after the operation. At necropsy further tumour nodules...
Immunophenotype analysis of malignant histiocytosis of the intestine

within the unresected small intestine were seen. Liver and spleen were normal.

Case 3 A 59 year old man presented with a three month history of weight loss, general malaise, and anorexia. He had no notable medical history. A barium meal showed a defect in the jejunum, which at laparotomy was found to be an ulcerated tumour (4-5 cm). Further tumour deposits were found within the jejunum, local lymph nodes, and liver. Histology of laparotomy specimens showed that the tumours were composed of large cells with irregular, often multinucleated nuclei, showing considerable pleomorphism. Large multinucleated giant cells were prominent. The intestinal mucosa showed mild villous irregularity but no true villous atrophy. Malignant histiocytosis of the intestine was diagnosed. He died four days postoperatively: necropsy was not performed.

Case 4 A 61 year old man presented as an acute abdominal emergency with no notable medical history. Laparotomy showed a large tumour within the ileum with thickening of the adjacent intestinal wall and spread to the local lymph nodes. The excised 280 cm of small intestine contained an ulcer 8 cm in depth that occupied most the mesenteric mass with walls and base composed of tumour up to 4 cm deep. The adjacent ileum was thickened, but no further areas of ulceration were noted. Histologically, the tumour consisted of a rather monomorphic infiltrate of medium to large cells with irregular, slightly indented nuclei, small nucleoli, and small amounts of eosinophilic cytoplasm. The intestinal origin of the tumour was seen over a short segment of the adjacent ileum. Villous atrophy was not evident, and the ileal mucosa had minimally shortened villi, which were distended by a non-specific chronic inflammatory cell infiltrate with increased numbers of intraepithelial lymphocytes. Centrocytic lymphoma was diagnosed initially, but immunohistochemistry showed strong granular paranuclear staining for \(\lambda \) AT. Malignant histiocytosis of the intestine was diagnosed. He died three months postoperatively: necropsy was not performed.

Table 1 Monoclonal antibodies used in this study

<table>
<thead>
<tr>
<th>Monoclonal antibody</th>
<th>Specificity</th>
<th>Reference</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>F10-89-4</td>
<td>Leucocyte common antigen</td>
<td>7</td>
<td>J Fabre</td>
</tr>
<tr>
<td>Dako LC</td>
<td>Leucocyte common antigen</td>
<td>8</td>
<td>Dakopatts</td>
</tr>
<tr>
<td>F8-11-13</td>
<td>Leucocyte common antigen</td>
<td>9</td>
<td>J Fabre</td>
</tr>
<tr>
<td>Associated with HLA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA6 147</td>
<td>tMHC Class II, DR ((\alpha) chain)</td>
<td>10</td>
<td>K Guy</td>
</tr>
<tr>
<td>DA6 231</td>
<td>tMHC Class II, DP and DR ((\beta) chain)</td>
<td>11</td>
<td>K Guy</td>
</tr>
<tr>
<td>Leu10</td>
<td>tMHC Class II, DQ</td>
<td>12</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>Associated with monocyte or macrophages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*anti lyosyme</td>
<td>Lyosyme</td>
<td></td>
<td>Dakopatts</td>
</tr>
<tr>
<td>*anti (\lambda) AT</td>
<td>(\alpha)-1-antitrypsin</td>
<td></td>
<td>Dakopatts</td>
</tr>
<tr>
<td>FMC17</td>
<td>Monocytes</td>
<td>13</td>
<td>H Zola</td>
</tr>
<tr>
<td>FMC32</td>
<td>Monocytes</td>
<td>13</td>
<td>H Zola</td>
</tr>
<tr>
<td>OKM1</td>
<td>Monocytes, macrophages, granulocytes</td>
<td>14</td>
<td>Ortho Diagnostics</td>
</tr>
<tr>
<td>Leu M2</td>
<td>Human monocyte antigen</td>
<td>15</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>MO2</td>
<td>Monocytes</td>
<td>16</td>
<td>Coulter Electronics Ltd</td>
</tr>
<tr>
<td>Dako-C3b</td>
<td>C3b receptor</td>
<td>17</td>
<td>Dakopatts</td>
</tr>
<tr>
<td>Dako-DRC1</td>
<td>Dendritic reticulum cells</td>
<td>18</td>
<td>Dakopatts</td>
</tr>
<tr>
<td>FMC8</td>
<td>Monocytes, Dendritic Reticulum cells</td>
<td>19, 20</td>
<td>H Zola</td>
</tr>
<tr>
<td>Associated with T lymphocyte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKT3</td>
<td>Pan T lymphocyte (T3 complex)</td>
<td>21</td>
<td>Ortho Diagnostics</td>
</tr>
<tr>
<td>UCHT1</td>
<td>Pan T lymphocyte (T3 complex)</td>
<td>22</td>
<td>Seward Laboratories Ltd</td>
</tr>
<tr>
<td>Leu4</td>
<td>Pan T lymphocyte (T3 complex)</td>
<td>23</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>Dako T2</td>
<td>All immature, majority of mature T lymphocytes</td>
<td>24</td>
<td>Dakopatts</td>
</tr>
<tr>
<td>OKT4</td>
<td>Helper T lymphocytes, monocytes</td>
<td>21, 25</td>
<td>Ortho Diagnostics</td>
</tr>
<tr>
<td>Leu3a</td>
<td>Helper T lymphocytes, monocytes</td>
<td>23, 25</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>OKT8</td>
<td>Suppressor or cytotoxic T lymphocytes</td>
<td>26</td>
<td>Ortho Diagnostics</td>
</tr>
<tr>
<td>Leu2a</td>
<td>Suppressor or cytotoxic T lymphocytes</td>
<td>23</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>OKT11</td>
<td>Sheep erythrocyte receptor</td>
<td>27</td>
<td>Ortho Diagnostics</td>
</tr>
<tr>
<td>OKT6</td>
<td>Cortical lymphocytes, interdigitating reticulum cells</td>
<td>23, 28</td>
<td>Ortho Diagnostics</td>
</tr>
<tr>
<td>Leu7</td>
<td>Natural killer cells</td>
<td>29</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>Associated with B lymphocyte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*anti Kappa</td>
<td>(\kappa) light chain</td>
<td></td>
<td>Seward Laboratories</td>
</tr>
<tr>
<td>*anti Lambda</td>
<td>(\lambda) light chain</td>
<td></td>
<td>Seward Laboratories</td>
</tr>
<tr>
<td>DA6 127</td>
<td>IgM heavy chain</td>
<td></td>
<td>K Guy</td>
</tr>
<tr>
<td>B1</td>
<td>B lymphocytes</td>
<td>30</td>
<td>Coulter Electronics Ltd</td>
</tr>
<tr>
<td>Dako Pan B</td>
<td>B lymphocytes</td>
<td>31</td>
<td>Dakopatts</td>
</tr>
<tr>
<td>Dako—EMA</td>
<td>Human milk fat globulin protein</td>
<td>32</td>
<td>Dakopatts</td>
</tr>
<tr>
<td>Leu M1</td>
<td>Granulocytes</td>
<td>33</td>
<td>Becton Dickinson</td>
</tr>
</tbody>
</table>

*Polyclonal antiserum.

*MHC = Major histocompatibility complex.
Fig. 1 Malignant histiocytosis of the intestine (case 3) showing diffuse infiltrate of large pleomorphic cells with irregular nuclei and prominent nucleoli. Multinucleated cells are present. Paraffin section, haematoxylin and eosin. × 250.

Fig. 2 Malignant histiocytosis of the intestine (case 4). Tumour consists of slightly irregular medium sized cells showing mild nuclear pleomorphism, prominent nucleoli, and mild to moderate amounts of cytoplasm. Paraffin section, haematoxylin and eosin. × 250; inset × 1000.

Case 5 A 45 year old woman with a long history of coeliac disease presented as an acute abdominal emergency. Laparotomy showed a perforated ileum with multiple sites of stricture and ulceration. Histology showed the presence of multiple deposits of tumour consisting of large pleomorphic histiocytes, often with multinucleated nuclei and multinucleated forms. The jejunal mucosa showed severe, partial, and subtotal villous atrophy. Malignant histiocytosis of the intestine was diagnosed.

She died six weeks postoperatively. At necropsy no evidence of further intestinal tumour, or spread to the spleen, liver, or bone marrow was found.

Case 6 A 19 year old man presented with a four week history of a swelling in the left axilla. Histology showed the presence of a highly cellular neoplasm composed of large cells with moderate cytoplasm, large vesicular nuclei, and a high mitotic rate. True histiocytic lymphoma was diagnosed after immunohistochemical studies. He was alive one month postoperatively.

Tissue samples and immunohistochemical staining

A panel of antibodies (Table 1) were used on both cryostat and paraffin sections by a previously described immunoperoxidase technique. Cryostat sections were incubated with primary monoclonal antibody at room temperature for 30 minutes; paraffin sections were incubated for 30 minutes at room temperature and stained for α1AT and lysozyme and with other antisera overnight. Sections were trypsinised before staining for α1AT and lysozyme.

Results

Histology and tumour classification

All five cases of intestinal neoplasm in this study were diagnosed as cases of malignant histiocytosis of the intestine based on morphological appearances after examination of paraffin sections stained with haematoxylin and eosin. All tissues showed characteristic granular paranuclear staining for α1AT.

In cases 1, 2, and 5 there was either a history of coeliac disease, or villous atrophy was seen histologically. Case 3 showed only mild villous atrophy. Multiple deposits of tumour were present in cases 1, 2, 3, and 5. The histological appearances in each of these cases were similar, the tumours consisting of large pleomorphic cells with irregular nuclei and prominent nucleoli (Fig. 1). Multinucleated forms were often present. In contrast, in case 4 only one tumour deposit was noted within the small intestine, and true villous atrophy was not a feature. Histology showed a rather monomorphic population of medium to large cells with irregular indented nuclei, small nucleoli, and small to moderate amounts of cytoplasm (Fig. 2). Although this case was initially diagnosed as a centrocytic lymphoma, the subsequent strong paranuclear staining with α1AT and the similarity with the less differentiated or blastic form of histiocytic lym-
phoma, recognised by Isaacson and Wright,36 resulted in a review diagnosis of malignant histiocytosis of the intestine.

True histiocytic lymphoma was definitively diagnosed in case 6 but only with the aid of immunohistochemical studies.

Immunohistochemical staining of paraffin sections

All the paraffin sections were stained with various antisera that react with tissue fixed in formalin. Table 2 shows the results.

In all five cases of malignant histiocytosis of the intestine and in the one case of histiocytic lymphoma tumour cells reacted with α1AT, although the intensity of the staining reaction between individual cells and the number of malignant cells staining within the specimens varied.

Only two of our cases showed staining for lysozyme in tumour cells (cases 1 and 2), and this is consistent with a previous report in which only a few cases of malignant histiocytosis of the intestine stained for lysozyme.5

The haemopoietic origin of the malignant cells was shown by reactivity with the leucocyte common antibodies. All six cases reacted strongly with Dako leucocyte common, a mixture of two monoclonal antibodies against different determinants on the leucocyte common antigen.9 F8-11-13, which recognises the high molecular weight form of the leucocyte common antigen,7 reacted strongly with three cases of malignant histiocytosis of the intestine (cases 3, 4, and 5) and reacted weakly with the two other cases. F8-11-13 did not react with the histiocytic lymphoma.

Five of the six cases reacted with epithelial membrane antigen (Dako), producing both a strong membrane and a focal cytoplasmic reaction. These findings are consistent with the observation of other workers who have shown reactivity of monoclonal antibodies against the human milk fat globule protein with histiocytic neoplasms and a proportion of cases of non-Hodgkin's lymphoma.37 None of the cases reacted with Leu M1, which primarily detects granulocytes but which has recently been shown to react with Reed Sternberg and Hodgkin's cells.37,38

Immunohistochemical staining of cryostat sections

Fresh frozen tissue was available from four of the cases of malignant histiocytosis of the intestine and from the case of histiocytic lymphoma. Table 3 gives the results of staining with a panel of monoclonal antibodies.

Reactivity with the leucocyte common antibodies F10-89-4 and Dako leucocyte common show that the tumour cells are of haemopoietic origin. Results with Dako leucocyte common and F8-11-13 were comparable with those seen with paraffin sections.

Expression of monocyte markers by tumour cells was variable. In each of the cases of malignant histiocytosis of the intestine studied a proportion of tumour cells showed reactivity with three of the panel

![Fig. 3 Malignant histiocytosis of the intestine (case 3) stained with FMC 17. Proportion of tumour cells show strong membrane immunoreactivity. Cryostat section. x 400.](http://jcp.bmj.com/)

1als.

Table 2 Immunohistochemical staining of paraffin sections

<table>
<thead>
<tr>
<th>Case No</th>
<th>Diagnosis</th>
<th>Antibody</th>
<th>α1AT</th>
<th>Lysozyme</th>
<th>F8-11-13</th>
<th>Dako LC</th>
<th>Dako-EMA</th>
<th>Leu M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MHI</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ + +</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MHI</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ + +</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MHI</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>++ +</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MHI</td>
<td>+ +</td>
<td>-</td>
<td>++</td>
<td>++ +</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MHI</td>
<td>+ +</td>
<td>-</td>
<td>++</td>
<td>++ +</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>HL</td>
<td>++ +</td>
<td>-</td>
<td>-</td>
<td>+ + +</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Negative (−) = <10%; mildly positive (+) = 10–30%; strongly positive (++) = 30–60%; very strongly positive (+++) = >60% positively reacting tumour cells.

\(MHI = \text{Malignant histiocytosis of the intestine; HL = histiocytic lymphoma.}\)
of the monocyte macrophage monoclonal antibodies. All tissue sections contained a proportion of tumour cells that stained with the monoclonal antibodies FMC17, FMC32, and OKM1 (Fig. 3) but that did not react with the antimonocyte monoclonal antibodies MO2 and Leu M2, or with monoclonal antibodies reacting with dendritic cell populations (Dako-C3b, Dako-DRC1, and OKT6). FMC8 stained most tumour cells in cases 3 and 4 and a few cells in case 2. Although FMC8 stains follicle centre dendritic reticulum cells in normal tissue (personal observation), this antibody cannot be thought of as lineage specific as it also stains immature B cells in some cases of B-chronic lymphatic leukaemia, as well as platelets, granulocytes, and monocytes.19 20 The histiocytic lymphoma showed reactivity with FMC17, FMC32, OKM1, Leu M2, and FMC8.

The staining of malignant histiocytosis of the intestine with T cell monoclonal antibodies again showed variable reactivity. All tissue sections reacted with the anti T4 monoclonal antibodies Leu 3a and OKT4 as did the histiocytic lymphoma. Both of these monoclonal antibodies react with cells of monocyte macrophage lineage.25 Morphologically abnormal tumour cells, however, also reacted with other T cell monoclonal antibodies. A large proportion of tumour cells in all cases reacted with monoclonal antibodies detecting epitopes on the T3 complex (UCHT1 and Leu 4) (Figs. 4 and 5), and they also stained with Dako T2, which reacts with a T cell associated antigen.24 Only two cases (2 and 4) showed reactivity
Immunophenotype analysis of malignant histiocytosis of the intestine

with OKT3. A few tumour cells in cases 1, 2, and 3 reacted weakly with OKT11. None of the cases reacted with the anti T8 monoclonal antibodies. Neither of the two cases tested reacted with Leu 7, an antibody which recognises natural killer cells. In serial sections a proportion of tumour cells reacting with T cell monoclonal antibodies also seemed to react with OKM1. The histiocytic lymphoma reacted with the anti T4 monoclonal antibodies but did not react with any of the other T cell monoclonal antibodies used.

There was variable expression of Class II major histocompatibility complex antigens. In cases 1 and 2 DR (α and β) and DQ antigens were detectable (DA6 231, DA6 147, and Leu 10, respectively). In cases 3 and 4 a few tumour cells expressing DR antigens could be detected, but tumour cells expressing DQ were not seen. The histiocytic lymphoma expressed DR (α and β) and DQ antigens. None of the cases reacted with the pan B lymphocyte markers Dako B, B1, or with the monoclonal antibodies to immunoglobulin light or IgM heavy chains.

Discussion

Each of the five cases of intestinal malignancy in this study exhibited clinical features and histological appearances, including strong paranuclear staining for α1AT, which led to the clinicopathological diagnosis of malignant histiocytosis of the intestine based on the criteria described by Isaacson and Wright. 1 35

In case 4 some features differed from the other cases but this case was similar morphologically to the blastic or poorly differentiated form of histiocytic lymphoma recognised by Isaacson and Wright. 36

Reactivity of all five cases with leucocyte common antibodies confirms the haemopoietic lineage of the tumour cells. Both Dako leucocyte common and F10-89-4 react with cells of monocyte or macrophage lineage. 7 8 F8-11-13, however, which reacts with the high molecular weight form of the leucocyte common antigen expressed by B cells and only a proportion of T cells 9 and which does not react with cells of histiocytic lineage, 40 showed reactivity within our cases. This raises questions as to the histogenesis of these tumours.

Further questions as to the histogenesis of the tumours are raised by the observations that all the tumours strongly expressed some T cell markers. The finding that a proportion of tumour cells in all four cases of malignant histiocytosis of the intestine and the histiocytic lymphoma reacted with the monoclonal antibodies OKT4 and Leu3a is not unexpected as these antibodies have been shown previously to react with cells of monocyte or macrophage lineage. 25 Morphologically abnormal cells, however, also expressed antigens of the T3 complex (OKT3+, UCHT1+, Leu4+) and the T cell associated antigen recognised by Dako T2, as well as reacting with OKM1.

Although clinical history, morphological criteria, and staining for α1AT showed that all cases were similar and could be diagnosed as malignant histiocytosis of the intestine, the results of immunohistochemical staining showed that the tumour cells of malignant histiocytosis of the intestine did not express a characteristic monocyte or macrophage phenotype. The immunophenotype of most cells in our cases would be the same as those of a T cell neoplasm with a background population of cells of macrophage lineage. It could be argued that cells with a monocyte or macrophage phenotype were the "true" malignant population with T cells a reactive component. Obvious abnormal cells did stain for α1AT in paraffin sections; similar large multilobulated and multinucleated forms which could be identified in cryostat sections, however, reacted with T cell monoclonal antibodies.

Alpha 1AT is believed to be a reliable marker of malignant histiocytes. 5 Recently, however, Stein et al reported a group of large cell lymphomas, positive for α1AT and Ki 1, a proportion of which also expressed T cell markers. 24 These tumours bear immunophenotypic similarities to the present cases. Ki 1 also reacts with Hodgkin's and Reed-Sternberg cells, 24 41 and α1AT has also been reported to stain these cells. 41 This raises the possibility that there may be a relation between malignant histiocytosis of the intestine and Hodgkin's disease. None of our cases reacted with Leu M1, however, whereas most Reed-
Sternberg cells express this marker.38, 39

Recently, a patient with an abnormal expansion of granular lymphocytes that reacted with both T cell and macrophage markers (Leu7+, OKT3+, OKT4+, OKT8+, OKM1+) was described.42 Although none of our specimens reacted with Leu7 when tested, the neoplastic cells in malignant histiocytosis of the intestine may possibly be related to such a cell expressing markers of T cell and macrophage lineage. Such an expansion of large granular lymphocytes, which were negative for Leu7 but positive for T and monocytic antigens, has been described in a patient.43

Isaacson et al recently reported four cases of malignant histiocytosis of the intestine arising in coeliac disease, each of which showed a T cell phenotype. Three of these four cases also showed T cell receptor gene rearrangement.44 These findings, along with our results, strongly support the idea that malignant histiocytosis of the intestine is a T cell lymphoma.

When a panel of monoclonal antibodies was applied to cases of malignant histiocytosis of the intestine, we obtained results that revealed a diversity of phenotype expression within the tumour cells. These results show a mixed population of cells in malignant histiocytosis of the intestine, only a proportion of which expressed typical macrophage markers, while most tumour cells expressed T cell markers. These observations confirm the need for a critical re-evaluation of the histogenesis in this group of tumours.

We thank Mr D Cossar and Mr E Miller for expert technical help, the physicians of the East of Scotland and Newcastle Lymphoma Group for the clinical information on the cases studied, and Mrs Fiona Govan and Mrs Margo Boyle for typing the manuscript.

This work was in part supported by grants from the Melville Trust and the Sir Stanley and Lady Davidson Research Fund.

References

12 Brodley FM. A mature approach to human class II histocompatibility antigens; reactions of four monoclonal antibodies with the products of nine haplotypes. \textit{Immunogenetics} 1984;19:179–84.

17 Gerdes J, Naier M, Mason DY, Stein H. Human complement (C3b) receptors defined by a mouse monoclonal antibody. \textit{Immunology} 1982;45:645–53.

Immunophenotype analysis of malignant histiocytosis of the intestine

Requests for reprints to: Dr D Salter, Department of Pathology, University Medical School, Teviot Place, Edinburgh EH8 9AG, Scotland.
Immunophenotype analysis of malignant histiocytosis of the intestine.
D M Salter, A S Krajewski and A E Dewar

doi: 10.1136/jcp.39.1.8

Updated information and services can be found at:
http://jcp.bmj.com/content/39/1/8

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/